Skip to content

Tair

TairVectorStore #

Bases: VectorStore

Initialize TairVectorStore.

Two index types are available: FLAT & HNSW.

index args for HNSW
  • ef_construct
  • M
  • ef_search

Detailed info for these arguments can be found here: https://www.alibabacloud.com/help/en/tair/latest/tairvector#section-c76-ull-5mk

Parameters:

Name Type Description Default
index_name str

Name of the index.

required
index_type str

Type of the index. Defaults to 'HNSW'.

'HNSW'
index_args Dict[str, Any]

Arguments for the index. Defaults to None.

None
tair_url str

URL for the Tair instance.

required
overwrite bool

Whether to overwrite the index if it already exists. Defaults to False.

False
kwargs Any

Additional arguments to pass to the Tair client.

{}

Raises:

Type Description
ValueError

If tair-py is not installed

ValueError

If failed to connect to Tair instance

Examples:

pip install llama-index-vector-stores-tair

from llama_index.core.vector_stores.tair import TairVectorStore

# Create a TairVectorStore
vector_store = TairVectorStore(
    tair_url="redis://{username}:{password}@r-bp****************.redis.rds.aliyuncs.com:{port}",
    index_name="my_index",
    index_type="HNSW",
    index_args={"M": 16, "ef_construct": 200},
    overwrite=True
)
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-tair/llama_index/vector_stores/tair/base.py
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
class TairVectorStore(VectorStore):
    """Initialize TairVectorStore.

    Two index types are available: FLAT & HNSW.

    index args for HNSW:
        - ef_construct
        - M
        - ef_search

    Detailed info for these arguments can be found here:
    https://www.alibabacloud.com/help/en/tair/latest/tairvector#section-c76-ull-5mk

    Args:
        index_name (str): Name of the index.
        index_type (str): Type of the index. Defaults to 'HNSW'.
        index_args (Dict[str, Any]): Arguments for the index. Defaults to None.
        tair_url (str): URL for the Tair instance.
        overwrite (bool): Whether to overwrite the index if it already exists.
            Defaults to False.
        kwargs (Any): Additional arguments to pass to the Tair client.

    Raises:
        ValueError: If tair-py is not installed
        ValueError: If failed to connect to Tair instance

    Examples:
        `pip install llama-index-vector-stores-tair`

        ```python
        from llama_index.core.vector_stores.tair import TairVectorStore

        # Create a TairVectorStore
        vector_store = TairVectorStore(
            tair_url="redis://{username}:{password}@r-bp****************.redis.rds.aliyuncs.com:{port}",
            index_name="my_index",
            index_type="HNSW",
            index_args={"M": 16, "ef_construct": 200},
            overwrite=True
        )
        ```
    """

    stores_text = True
    stores_node = True
    flat_metadata = False

    def __init__(
        self,
        tair_url: str,
        index_name: str,
        index_type: str = "HNSW",
        index_args: Optional[Dict[str, Any]] = None,
        overwrite: bool = False,
        **kwargs: Any,
    ) -> None:
        try:
            self._tair_client = Tair.from_url(tair_url, **kwargs)
        except ValueError as e:
            raise ValueError(f"Tair failed to connect: {e}")

        # index identifiers
        self._index_name = index_name
        self._index_type = index_type
        self._metric_type = "L2"
        self._overwrite = overwrite
        self._index_args = {}
        self._query_args = {}
        if index_type == "HNSW":
            if index_args is not None:
                ef_construct = index_args.get("ef_construct", 500)
                M = index_args.get("M", 24)
                ef_search = index_args.get("ef_search", 400)
            else:
                ef_construct = 500
                M = 24
                ef_search = 400

            self._index_args = {"ef_construct": ef_construct, "M": M}
            self._query_args = {"ef_search": ef_search}

    @property
    def client(self) -> "Tair":
        """Return the Tair client instance."""
        return self._tair_client

    def add(self, nodes: List[BaseNode], **add_kwargs: Any) -> List[str]:
        """Add nodes to the index.

        Args:
            nodes (List[BaseNode]): List of nodes with embeddings

        Returns:
            List[str]: List of ids of the documents added to the index.
        """
        # check to see if empty document list was passed
        if len(nodes) == 0:
            return []

        # set vector dim for creation if index doesn't exist
        self.dim = len(nodes[0].get_embedding())

        if self._index_exists():
            if self._overwrite:
                self.delete_index()
                self._create_index()
            else:
                logging.info(f"Adding document to existing index {self._index_name}")
        else:
            self._create_index()

        ids = []
        for node in nodes:
            attributes = {
                "id": node.node_id,
                "doc_id": node.ref_doc_id,
                "text": node.get_content(metadata_mode=MetadataMode.NONE),
            }
            metadata_dict = node_to_metadata_dict(
                node, remove_text=True, flat_metadata=self.flat_metadata
            )
            attributes.update(metadata_dict)

            ids.append(node.node_id)
            self._tair_client.tvs_hset(
                self._index_name,
                f"{node.ref_doc_id}#{node.node_id}",
                vector=node.get_embedding(),
                is_binary=False,
                **attributes,
            )

        _logger.info(f"Added {len(ids)} documents to index {self._index_name}")
        return ids

    def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
        """Delete a document.

        Args:
            doc_id (str): document id

        """
        iter = self._tair_client.tvs_scan(self._index_name, "%s#*" % ref_doc_id)
        for k in iter:
            self._tair_client.tvs_del(self._index_name, k)

    def delete_index(self) -> None:
        """Delete the index and all documents."""
        _logger.info(f"Deleting index {self._index_name}")
        self._tair_client.tvs_del_index(self._index_name)

    def query(self, query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult:
        """Query the index.

        Args:
            query (VectorStoreQuery): query object

        Returns:
            VectorStoreQueryResult: query result

        Raises:
            ValueError: If query.query_embedding is None.
        """
        filter_expr = None
        if query.filters is not None:
            filter_expr = _to_filter_expr(query.filters)

        if not query.query_embedding:
            raise ValueError("Query embedding is required for querying.")

        _logger.info(f"Querying index {self._index_name}")

        query_args = self._query_args
        if self._index_type == "HNSW" and "ef_search" in kwargs:
            query_args["ef_search"] = kwargs["ef_search"]

        results = self._tair_client.tvs_knnsearch(
            self._index_name,
            query.similarity_top_k,
            query.query_embedding,
            False,
            filter_str=filter_expr,
            **query_args,
        )
        results = [(k.decode(), float(s)) for k, s in results]

        ids = []
        nodes = []
        scores = []
        pipe = self._tair_client.pipeline(transaction=False)
        for key, score in results:
            scores.append(score)
            pipe.tvs_hmget(self._index_name, key, "id", "doc_id", "text")
        metadatas = pipe.execute()
        for i, m in enumerate(metadatas):
            # TODO: properly get the _node_conent
            doc_id = m[0].decode()
            node = TextNode(
                text=m[2].decode(),
                id_=doc_id,
                embedding=None,
                relationships={
                    NodeRelationship.SOURCE: RelatedNodeInfo(node_id=m[1].decode())
                },
            )
            ids.append(doc_id)
            nodes.append(node)
        _logger.info(f"Found {len(nodes)} results for query with id {ids}")

        return VectorStoreQueryResult(nodes=nodes, ids=ids, similarities=scores)

    def _create_index(self) -> None:
        _logger.info(f"Creating index {self._index_name}")
        self._tair_client.tvs_create_index(
            self._index_name,
            self.dim,
            distance_type=self._metric_type,
            index_type=self._index_type,
            data_type=tairvector.DataType.Float32,
            **self._index_args,
        )

    def _index_exists(self) -> bool:
        index = self._tair_client.tvs_get_index(self._index_name)
        return index is not None

client property #

client: Tair

Return the Tair client instance.

add #

add(nodes: List[BaseNode], **add_kwargs: Any) -> List[str]

Add nodes to the index.

Parameters:

Name Type Description Default
nodes List[BaseNode]

List of nodes with embeddings

required

Returns:

Type Description
List[str]

List[str]: List of ids of the documents added to the index.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-tair/llama_index/vector_stores/tair/base.py
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
def add(self, nodes: List[BaseNode], **add_kwargs: Any) -> List[str]:
    """Add nodes to the index.

    Args:
        nodes (List[BaseNode]): List of nodes with embeddings

    Returns:
        List[str]: List of ids of the documents added to the index.
    """
    # check to see if empty document list was passed
    if len(nodes) == 0:
        return []

    # set vector dim for creation if index doesn't exist
    self.dim = len(nodes[0].get_embedding())

    if self._index_exists():
        if self._overwrite:
            self.delete_index()
            self._create_index()
        else:
            logging.info(f"Adding document to existing index {self._index_name}")
    else:
        self._create_index()

    ids = []
    for node in nodes:
        attributes = {
            "id": node.node_id,
            "doc_id": node.ref_doc_id,
            "text": node.get_content(metadata_mode=MetadataMode.NONE),
        }
        metadata_dict = node_to_metadata_dict(
            node, remove_text=True, flat_metadata=self.flat_metadata
        )
        attributes.update(metadata_dict)

        ids.append(node.node_id)
        self._tair_client.tvs_hset(
            self._index_name,
            f"{node.ref_doc_id}#{node.node_id}",
            vector=node.get_embedding(),
            is_binary=False,
            **attributes,
        )

    _logger.info(f"Added {len(ids)} documents to index {self._index_name}")
    return ids

delete #

delete(ref_doc_id: str, **delete_kwargs: Any) -> None

Delete a document.

Parameters:

Name Type Description Default
doc_id str

document id

required
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-tair/llama_index/vector_stores/tair/base.py
174
175
176
177
178
179
180
181
182
183
def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
    """Delete a document.

    Args:
        doc_id (str): document id

    """
    iter = self._tair_client.tvs_scan(self._index_name, "%s#*" % ref_doc_id)
    for k in iter:
        self._tair_client.tvs_del(self._index_name, k)

delete_index #

delete_index() -> None

Delete the index and all documents.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-tair/llama_index/vector_stores/tair/base.py
185
186
187
188
def delete_index(self) -> None:
    """Delete the index and all documents."""
    _logger.info(f"Deleting index {self._index_name}")
    self._tair_client.tvs_del_index(self._index_name)

query #

query(query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult

Query the index.

Parameters:

Name Type Description Default
query VectorStoreQuery

query object

required

Returns:

Name Type Description
VectorStoreQueryResult VectorStoreQueryResult

query result

Raises:

Type Description
ValueError

If query.query_embedding is None.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-tair/llama_index/vector_stores/tair/base.py
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
def query(self, query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult:
    """Query the index.

    Args:
        query (VectorStoreQuery): query object

    Returns:
        VectorStoreQueryResult: query result

    Raises:
        ValueError: If query.query_embedding is None.
    """
    filter_expr = None
    if query.filters is not None:
        filter_expr = _to_filter_expr(query.filters)

    if not query.query_embedding:
        raise ValueError("Query embedding is required for querying.")

    _logger.info(f"Querying index {self._index_name}")

    query_args = self._query_args
    if self._index_type == "HNSW" and "ef_search" in kwargs:
        query_args["ef_search"] = kwargs["ef_search"]

    results = self._tair_client.tvs_knnsearch(
        self._index_name,
        query.similarity_top_k,
        query.query_embedding,
        False,
        filter_str=filter_expr,
        **query_args,
    )
    results = [(k.decode(), float(s)) for k, s in results]

    ids = []
    nodes = []
    scores = []
    pipe = self._tair_client.pipeline(transaction=False)
    for key, score in results:
        scores.append(score)
        pipe.tvs_hmget(self._index_name, key, "id", "doc_id", "text")
    metadatas = pipe.execute()
    for i, m in enumerate(metadatas):
        # TODO: properly get the _node_conent
        doc_id = m[0].decode()
        node = TextNode(
            text=m[2].decode(),
            id_=doc_id,
            embedding=None,
            relationships={
                NodeRelationship.SOURCE: RelatedNodeInfo(node_id=m[1].decode())
            },
        )
        ids.append(doc_id)
        nodes.append(node)
    _logger.info(f"Found {len(nodes)} results for query with id {ids}")

    return VectorStoreQueryResult(nodes=nodes, ids=ids, similarities=scores)