Tair
TairVectorStore #
Bases: VectorStore
Initialize TairVectorStore.
Two index types are available: FLAT & HNSW.
index args for HNSW
- ef_construct
- M
- ef_search
Detailed info for these arguments can be found here: https://www.alibabacloud.com/help/en/tair/latest/tairvector#section-c76-ull-5mk
Parameters:
Name | Type | Description | Default |
---|---|---|---|
index_name |
str
|
Name of the index. |
required |
index_type |
str
|
Type of the index. Defaults to 'HNSW'. |
'HNSW'
|
index_args |
Dict[str, Any]
|
Arguments for the index. Defaults to None. |
None
|
tair_url |
str
|
URL for the Tair instance. |
required |
overwrite |
bool
|
Whether to overwrite the index if it already exists. Defaults to False. |
False
|
kwargs |
Any
|
Additional arguments to pass to the Tair client. |
{}
|
Raises:
Type | Description |
---|---|
ValueError
|
If tair-py is not installed |
ValueError
|
If failed to connect to Tair instance |
Examples:
pip install llama-index-vector-stores-tair
from llama_index.core.vector_stores.tair import TairVectorStore
# Create a TairVectorStore
vector_store = TairVectorStore(
tair_url="redis://{username}:{password}@r-bp****************.redis.rds.aliyuncs.com:{port}",
index_name="my_index",
index_type="HNSW",
index_args={"M": 16, "ef_construct": 200},
overwrite=True
)
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-tair/llama_index/vector_stores/tair/base.py
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
|
add #
add(nodes: List[BaseNode], **add_kwargs: Any) -> List[str]
Add nodes to the index.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
nodes |
List[BaseNode]
|
List of nodes with embeddings |
required |
Returns:
Type | Description |
---|---|
List[str]
|
List[str]: List of ids of the documents added to the index. |
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-tair/llama_index/vector_stores/tair/base.py
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
|
delete #
delete(ref_doc_id: str, **delete_kwargs: Any) -> None
Delete a document.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
doc_id |
str
|
document id |
required |
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-tair/llama_index/vector_stores/tair/base.py
174 175 176 177 178 179 180 181 182 183 |
|
delete_index #
delete_index() -> None
Delete the index and all documents.
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-tair/llama_index/vector_stores/tair/base.py
185 186 187 188 |
|
query #
query(query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult
Query the index.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query |
VectorStoreQuery
|
query object |
required |
Returns:
Name | Type | Description |
---|---|---|
VectorStoreQueryResult |
VectorStoreQueryResult
|
query result |
Raises:
Type | Description |
---|---|
ValueError
|
If query.query_embedding is None. |
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-tair/llama_index/vector_stores/tair/base.py
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
|