Supabase
SupabaseVectorStore #
Bases: BasePydanticVectorStore
Supbabase Vector.
In this vector store, embeddings are stored in Postgres table using pgvector.
During query time, the index uses pgvector/Supabase to query for the top k most similar nodes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
postgres_connection_string |
str
|
postgres connection string |
required |
collection_name |
str
|
name of the collection to store the embeddings in |
required |
dimension |
int
|
dimension of the embeddings. Defaults to 1536. |
DEFAULT_EMBEDDING_DIM
|
Examples:
pip install llama-index-vector-stores-supabase
from llama_index.vector_stores.supabase import SupabaseVectorStore
# Set up SupabaseVectorStore
vector_store = SupabaseVectorStore(
postgres_connection_string="postgresql://<user>:<password>@<host>:<port>/<db_name>",
collection_name="base_demo",
)
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-supabase/llama_index/vector_stores/supabase/base.py
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
|
add #
add(nodes: List[BaseNode], **add_kwargs: Any) -> List[str]
Add nodes to index.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
nodes |
List[BaseNode]
|
List[BaseNode]: list of nodes with embeddings |
required |
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-supabase/llama_index/vector_stores/supabase/base.py
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
|
get_by_id #
get_by_id(doc_id: str, **kwargs: Any) -> list
Get row ids by doc id.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
doc_id |
str
|
document id |
required |
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-supabase/llama_index/vector_stores/supabase/base.py
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
|
delete #
delete(ref_doc_id: str, **delete_kwargs: Any) -> None
Delete doc.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
param ref_doc_id (str): document id |
required |
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-supabase/llama_index/vector_stores/supabase/base.py
145 146 147 148 149 150 151 152 153 154 155 |
|
query #
query(query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult
Query index for top k most similar nodes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query |
List[float]
|
query embedding |
required |
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-supabase/llama_index/vector_stores/supabase/base.py
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
|