Singlestoredb
SingleStoreVectorStore #
Bases: VectorStore
SingleStore vector store.
This vector store stores embeddings within a SingleStore database table.
During query time, the index uses SingleStore to query for the top k most similar nodes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
table_name |
str
|
Specifies the name of the table in use. Defaults to "embeddings". |
'embeddings'
|
content_field |
str
|
Specifies the field to store the content. Defaults to "content". |
'content'
|
metadata_field |
str
|
Specifies the field to store metadata. Defaults to "metadata". |
'metadata'
|
vector_field |
str
|
Specifies the field to store the vector. Defaults to "vector". |
'vector'
|
Following |
arguments pertain to the connection pool
|
|
required |
pool_size |
int
|
Determines the number of active connections in the pool. Defaults to 5. |
5
|
max_overflow |
int
|
Determines the maximum number of connections allowed beyond the pool_size. Defaults to 10. |
10
|
timeout |
float
|
Specifies the maximum wait time in seconds for establishing a connection. Defaults to 30. |
30
|
Following |
arguments pertain to the connection
|
|
required |
host |
str
|
Specifies the hostname, IP address, or URL for the database connection. The default scheme is "mysql". |
required |
user |
str
|
Database username. |
required |
password |
str
|
Database password. |
required |
port |
int
|
Database port. Defaults to 3306 for non-HTTP connections, 80 for HTTP connections, and 443 for HTTPS connections. |
required |
database |
str
|
Database name. |
required |
Examples:
pip install llama-index-vector-stores-singlestoredb
from llama_index.vector_stores.singlestoredb import SingleStoreVectorStore
import os
# can set the singlestore db url in env
# or pass it in as an argument to the SingleStoreVectorStore constructor
os.environ["SINGLESTOREDB_URL"] = "PLACEHOLDER URL"
vector_store = SingleStoreVectorStore(
table_name="embeddings",
content_field="content",
metadata_field="metadata",
vector_field="vector",
timeout=30,
)
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-singlestoredb/llama_index/vector_stores/singlestoredb/base.py
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
|
add #
add(nodes: List[BaseNode], **add_kwargs: Any) -> List[str]
Add nodes to index.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
nodes |
List[BaseNode]
|
List[BaseNode]: list of nodes with embeddings |
required |
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-singlestoredb/llama_index/vector_stores/singlestoredb/base.py
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
|
delete #
delete(ref_doc_id: str, **delete_kwargs: Any) -> None
Delete nodes using with ref_doc_id.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ref_doc_id |
str
|
The doc_id of the document to delete. |
required |
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-singlestoredb/llama_index/vector_stores/singlestoredb/base.py
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
|
query #
query(query: VectorStoreQuery, filter: Optional[dict] = None, **kwargs: Any) -> VectorStoreQueryResult
Query index for top k most similar nodes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query |
VectorStoreQuery
|
Contains query_embedding and similarity_top_k attributes. |
required |
filter |
Optional[dict]
|
A dictionary of metadata fields and values to filter by. Defaults to None. |
None
|
Returns:
Name | Type | Description |
---|---|---|
VectorStoreQueryResult |
VectorStoreQueryResult
|
Contains nodes, similarities, and ids attributes. |
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-singlestoredb/llama_index/vector_stores/singlestoredb/base.py
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
|