Skip to content

Simple

Simple vector store index.

SimpleVectorStore #

Bases: VectorStore

Simple Vector Store.

In this vector store, embeddings are stored within a simple, in-memory dictionary.

Parameters:

Name Type Description Default
simple_vector_store_data_dict Optional[dict]

data dict containing the embeddings and doc_ids. See SimpleVectorStoreData for more details.

required
Source code in llama-index-core/llama_index/core/vector_stores/simple.py
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
class SimpleVectorStore(VectorStore):
    """Simple Vector Store.

    In this vector store, embeddings are stored within a simple, in-memory dictionary.

    Args:
        simple_vector_store_data_dict (Optional[dict]): data dict
            containing the embeddings and doc_ids. See SimpleVectorStoreData
            for more details.
    """

    stores_text: bool = False

    def __init__(
        self,
        data: Optional[SimpleVectorStoreData] = None,
        fs: Optional[fsspec.AbstractFileSystem] = None,
        **kwargs: Any,
    ) -> None:
        """Initialize params."""
        self._data = data or SimpleVectorStoreData()
        self._fs = fs or fsspec.filesystem("file")

    @classmethod
    def from_persist_dir(
        cls,
        persist_dir: str = DEFAULT_PERSIST_DIR,
        namespace: Optional[str] = None,
        fs: Optional[fsspec.AbstractFileSystem] = None,
    ) -> "SimpleVectorStore":
        """Load from persist dir."""
        if namespace:
            persist_fname = f"{namespace}{NAMESPACE_SEP}{DEFAULT_PERSIST_FNAME}"
        else:
            persist_fname = DEFAULT_PERSIST_FNAME

        if fs is not None:
            persist_path = concat_dirs(persist_dir, persist_fname)
        else:
            persist_path = os.path.join(persist_dir, persist_fname)
        return cls.from_persist_path(persist_path, fs=fs)

    @classmethod
    def from_namespaced_persist_dir(
        cls,
        persist_dir: str = DEFAULT_PERSIST_DIR,
        fs: Optional[fsspec.AbstractFileSystem] = None,
    ) -> Dict[str, VectorStore]:
        """Load from namespaced persist dir."""
        listing_fn = os.listdir if fs is None else fs.listdir

        vector_stores: Dict[str, VectorStore] = {}

        try:
            for fname in listing_fn(persist_dir):
                if fname.endswith(DEFAULT_PERSIST_FNAME):
                    namespace = fname.split(NAMESPACE_SEP)[0]

                    # handle backwards compatibility with stores that were persisted
                    if namespace == DEFAULT_PERSIST_FNAME:
                        vector_stores[DEFAULT_VECTOR_STORE] = cls.from_persist_dir(
                            persist_dir=persist_dir, fs=fs
                        )
                    else:
                        vector_stores[namespace] = cls.from_persist_dir(
                            persist_dir=persist_dir, namespace=namespace, fs=fs
                        )
        except Exception:
            # failed to listdir, so assume there is only one store
            try:
                vector_stores[DEFAULT_VECTOR_STORE] = cls.from_persist_dir(
                    persist_dir=persist_dir, fs=fs, namespace=DEFAULT_VECTOR_STORE
                )
            except Exception:
                # no namespace backwards compat
                vector_stores[DEFAULT_VECTOR_STORE] = cls.from_persist_dir(
                    persist_dir=persist_dir, fs=fs
                )

        return vector_stores

    @property
    def client(self) -> None:
        """Get client."""
        return

    def get(self, text_id: str) -> List[float]:
        """Get embedding."""
        return self._data.embedding_dict[text_id]

    def add(
        self,
        nodes: List[BaseNode],
        **add_kwargs: Any,
    ) -> List[str]:
        """Add nodes to index."""
        for node in nodes:
            self._data.embedding_dict[node.node_id] = node.get_embedding()
            self._data.text_id_to_ref_doc_id[node.node_id] = node.ref_doc_id or "None"

            metadata = node_to_metadata_dict(
                node, remove_text=True, flat_metadata=False
            )
            metadata.pop("_node_content", None)
            self._data.metadata_dict[node.node_id] = metadata
        return [node.node_id for node in nodes]

    def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
        """
        Delete nodes using with ref_doc_id.

        Args:
            ref_doc_id (str): The doc_id of the document to delete.

        """
        text_ids_to_delete = set()
        for text_id, ref_doc_id_ in self._data.text_id_to_ref_doc_id.items():
            if ref_doc_id == ref_doc_id_:
                text_ids_to_delete.add(text_id)

        for text_id in text_ids_to_delete:
            del self._data.embedding_dict[text_id]
            del self._data.text_id_to_ref_doc_id[text_id]
            # Handle metadata_dict not being present in stores that were persisted
            # without metadata, or, not being present for nodes stored
            # prior to metadata functionality.
            if self._data.metadata_dict is not None:
                self._data.metadata_dict.pop(text_id, None)

    def query(
        self,
        query: VectorStoreQuery,
        **kwargs: Any,
    ) -> VectorStoreQueryResult:
        """Get nodes for response."""
        # Prevent metadata filtering on stores that were persisted without metadata.
        if (
            query.filters is not None
            and self._data.embedding_dict
            and not self._data.metadata_dict
        ):
            raise ValueError(
                "Cannot filter stores that were persisted without metadata. "
                "Please rebuild the store with metadata to enable filtering."
            )
        # Prefilter nodes based on the query filter and node ID restrictions.
        query_filter_fn = _build_metadata_filter_fn(
            lambda node_id: self._data.metadata_dict[node_id], query.filters
        )

        if query.node_ids is not None:
            available_ids = set(query.node_ids)

            def node_filter_fn(node_id: str) -> bool:
                return node_id in available_ids

        else:

            def node_filter_fn(node_id: str) -> bool:
                return True

        node_ids = []
        embeddings = []
        # TODO: consolidate with get_query_text_embedding_similarities
        for node_id, embedding in self._data.embedding_dict.items():
            if node_filter_fn(node_id) and query_filter_fn(node_id):
                node_ids.append(node_id)
                embeddings.append(embedding)

        query_embedding = cast(List[float], query.query_embedding)

        if query.mode in LEARNER_MODES:
            top_similarities, top_ids = get_top_k_embeddings_learner(
                query_embedding,
                embeddings,
                similarity_top_k=query.similarity_top_k,
                embedding_ids=node_ids,
            )
        elif query.mode == MMR_MODE:
            mmr_threshold = kwargs.get("mmr_threshold", None)
            top_similarities, top_ids = get_top_k_mmr_embeddings(
                query_embedding,
                embeddings,
                similarity_top_k=query.similarity_top_k,
                embedding_ids=node_ids,
                mmr_threshold=mmr_threshold,
            )
        elif query.mode == VectorStoreQueryMode.DEFAULT:
            top_similarities, top_ids = get_top_k_embeddings(
                query_embedding,
                embeddings,
                similarity_top_k=query.similarity_top_k,
                embedding_ids=node_ids,
            )
        else:
            raise ValueError(f"Invalid query mode: {query.mode}")

        return VectorStoreQueryResult(similarities=top_similarities, ids=top_ids)

    def persist(
        self,
        persist_path: str = os.path.join(DEFAULT_PERSIST_DIR, DEFAULT_PERSIST_FNAME),
        fs: Optional[fsspec.AbstractFileSystem] = None,
    ) -> None:
        """Persist the SimpleVectorStore to a directory."""
        fs = fs or self._fs
        dirpath = os.path.dirname(persist_path)
        if not fs.exists(dirpath):
            fs.makedirs(dirpath)

        with fs.open(persist_path, "w") as f:
            json.dump(self._data.to_dict(), f)

    @classmethod
    def from_persist_path(
        cls, persist_path: str, fs: Optional[fsspec.AbstractFileSystem] = None
    ) -> "SimpleVectorStore":
        """Create a SimpleKVStore from a persist directory."""
        fs = fs or fsspec.filesystem("file")
        if not fs.exists(persist_path):
            raise ValueError(
                f"No existing {__name__} found at {persist_path}, skipping load."
            )

        logger.debug(f"Loading {__name__} from {persist_path}.")
        with fs.open(persist_path, "rb") as f:
            data_dict = json.load(f)
            data = SimpleVectorStoreData.from_dict(data_dict)
        return cls(data)

    @classmethod
    def from_dict(cls, save_dict: dict) -> "SimpleVectorStore":
        data = SimpleVectorStoreData.from_dict(save_dict)
        return cls(data)

    def to_dict(self) -> dict:
        return self._data.to_dict()

client property #

client: None

Get client.

from_persist_dir classmethod #

from_persist_dir(persist_dir: str = DEFAULT_PERSIST_DIR, namespace: Optional[str] = None, fs: Optional[AbstractFileSystem] = None) -> SimpleVectorStore

Load from persist dir.

Source code in llama-index-core/llama_index/core/vector_stores/simple.py
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
@classmethod
def from_persist_dir(
    cls,
    persist_dir: str = DEFAULT_PERSIST_DIR,
    namespace: Optional[str] = None,
    fs: Optional[fsspec.AbstractFileSystem] = None,
) -> "SimpleVectorStore":
    """Load from persist dir."""
    if namespace:
        persist_fname = f"{namespace}{NAMESPACE_SEP}{DEFAULT_PERSIST_FNAME}"
    else:
        persist_fname = DEFAULT_PERSIST_FNAME

    if fs is not None:
        persist_path = concat_dirs(persist_dir, persist_fname)
    else:
        persist_path = os.path.join(persist_dir, persist_fname)
    return cls.from_persist_path(persist_path, fs=fs)

from_namespaced_persist_dir classmethod #

from_namespaced_persist_dir(persist_dir: str = DEFAULT_PERSIST_DIR, fs: Optional[AbstractFileSystem] = None) -> Dict[str, VectorStore]

Load from namespaced persist dir.

Source code in llama-index-core/llama_index/core/vector_stores/simple.py
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
@classmethod
def from_namespaced_persist_dir(
    cls,
    persist_dir: str = DEFAULT_PERSIST_DIR,
    fs: Optional[fsspec.AbstractFileSystem] = None,
) -> Dict[str, VectorStore]:
    """Load from namespaced persist dir."""
    listing_fn = os.listdir if fs is None else fs.listdir

    vector_stores: Dict[str, VectorStore] = {}

    try:
        for fname in listing_fn(persist_dir):
            if fname.endswith(DEFAULT_PERSIST_FNAME):
                namespace = fname.split(NAMESPACE_SEP)[0]

                # handle backwards compatibility with stores that were persisted
                if namespace == DEFAULT_PERSIST_FNAME:
                    vector_stores[DEFAULT_VECTOR_STORE] = cls.from_persist_dir(
                        persist_dir=persist_dir, fs=fs
                    )
                else:
                    vector_stores[namespace] = cls.from_persist_dir(
                        persist_dir=persist_dir, namespace=namespace, fs=fs
                    )
    except Exception:
        # failed to listdir, so assume there is only one store
        try:
            vector_stores[DEFAULT_VECTOR_STORE] = cls.from_persist_dir(
                persist_dir=persist_dir, fs=fs, namespace=DEFAULT_VECTOR_STORE
            )
        except Exception:
            # no namespace backwards compat
            vector_stores[DEFAULT_VECTOR_STORE] = cls.from_persist_dir(
                persist_dir=persist_dir, fs=fs
            )

    return vector_stores

get #

get(text_id: str) -> List[float]

Get embedding.

Source code in llama-index-core/llama_index/core/vector_stores/simple.py
171
172
173
def get(self, text_id: str) -> List[float]:
    """Get embedding."""
    return self._data.embedding_dict[text_id]

add #

add(nodes: List[BaseNode], **add_kwargs: Any) -> List[str]

Add nodes to index.

Source code in llama-index-core/llama_index/core/vector_stores/simple.py
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
def add(
    self,
    nodes: List[BaseNode],
    **add_kwargs: Any,
) -> List[str]:
    """Add nodes to index."""
    for node in nodes:
        self._data.embedding_dict[node.node_id] = node.get_embedding()
        self._data.text_id_to_ref_doc_id[node.node_id] = node.ref_doc_id or "None"

        metadata = node_to_metadata_dict(
            node, remove_text=True, flat_metadata=False
        )
        metadata.pop("_node_content", None)
        self._data.metadata_dict[node.node_id] = metadata
    return [node.node_id for node in nodes]

delete #

delete(ref_doc_id: str, **delete_kwargs: Any) -> None

Delete nodes using with ref_doc_id.

Parameters:

Name Type Description Default
ref_doc_id str

The doc_id of the document to delete.

required
Source code in llama-index-core/llama_index/core/vector_stores/simple.py
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
    """
    Delete nodes using with ref_doc_id.

    Args:
        ref_doc_id (str): The doc_id of the document to delete.

    """
    text_ids_to_delete = set()
    for text_id, ref_doc_id_ in self._data.text_id_to_ref_doc_id.items():
        if ref_doc_id == ref_doc_id_:
            text_ids_to_delete.add(text_id)

    for text_id in text_ids_to_delete:
        del self._data.embedding_dict[text_id]
        del self._data.text_id_to_ref_doc_id[text_id]
        # Handle metadata_dict not being present in stores that were persisted
        # without metadata, or, not being present for nodes stored
        # prior to metadata functionality.
        if self._data.metadata_dict is not None:
            self._data.metadata_dict.pop(text_id, None)

query #

query(query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult

Get nodes for response.

Source code in llama-index-core/llama_index/core/vector_stores/simple.py
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
def query(
    self,
    query: VectorStoreQuery,
    **kwargs: Any,
) -> VectorStoreQueryResult:
    """Get nodes for response."""
    # Prevent metadata filtering on stores that were persisted without metadata.
    if (
        query.filters is not None
        and self._data.embedding_dict
        and not self._data.metadata_dict
    ):
        raise ValueError(
            "Cannot filter stores that were persisted without metadata. "
            "Please rebuild the store with metadata to enable filtering."
        )
    # Prefilter nodes based on the query filter and node ID restrictions.
    query_filter_fn = _build_metadata_filter_fn(
        lambda node_id: self._data.metadata_dict[node_id], query.filters
    )

    if query.node_ids is not None:
        available_ids = set(query.node_ids)

        def node_filter_fn(node_id: str) -> bool:
            return node_id in available_ids

    else:

        def node_filter_fn(node_id: str) -> bool:
            return True

    node_ids = []
    embeddings = []
    # TODO: consolidate with get_query_text_embedding_similarities
    for node_id, embedding in self._data.embedding_dict.items():
        if node_filter_fn(node_id) and query_filter_fn(node_id):
            node_ids.append(node_id)
            embeddings.append(embedding)

    query_embedding = cast(List[float], query.query_embedding)

    if query.mode in LEARNER_MODES:
        top_similarities, top_ids = get_top_k_embeddings_learner(
            query_embedding,
            embeddings,
            similarity_top_k=query.similarity_top_k,
            embedding_ids=node_ids,
        )
    elif query.mode == MMR_MODE:
        mmr_threshold = kwargs.get("mmr_threshold", None)
        top_similarities, top_ids = get_top_k_mmr_embeddings(
            query_embedding,
            embeddings,
            similarity_top_k=query.similarity_top_k,
            embedding_ids=node_ids,
            mmr_threshold=mmr_threshold,
        )
    elif query.mode == VectorStoreQueryMode.DEFAULT:
        top_similarities, top_ids = get_top_k_embeddings(
            query_embedding,
            embeddings,
            similarity_top_k=query.similarity_top_k,
            embedding_ids=node_ids,
        )
    else:
        raise ValueError(f"Invalid query mode: {query.mode}")

    return VectorStoreQueryResult(similarities=top_similarities, ids=top_ids)

persist #

persist(persist_path: str = os.path.join(DEFAULT_PERSIST_DIR, DEFAULT_PERSIST_FNAME), fs: Optional[AbstractFileSystem] = None) -> None

Persist the SimpleVectorStore to a directory.

Source code in llama-index-core/llama_index/core/vector_stores/simple.py
284
285
286
287
288
289
290
291
292
293
294
295
296
def persist(
    self,
    persist_path: str = os.path.join(DEFAULT_PERSIST_DIR, DEFAULT_PERSIST_FNAME),
    fs: Optional[fsspec.AbstractFileSystem] = None,
) -> None:
    """Persist the SimpleVectorStore to a directory."""
    fs = fs or self._fs
    dirpath = os.path.dirname(persist_path)
    if not fs.exists(dirpath):
        fs.makedirs(dirpath)

    with fs.open(persist_path, "w") as f:
        json.dump(self._data.to_dict(), f)

from_persist_path classmethod #

from_persist_path(persist_path: str, fs: Optional[AbstractFileSystem] = None) -> SimpleVectorStore

Create a SimpleKVStore from a persist directory.

Source code in llama-index-core/llama_index/core/vector_stores/simple.py
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
@classmethod
def from_persist_path(
    cls, persist_path: str, fs: Optional[fsspec.AbstractFileSystem] = None
) -> "SimpleVectorStore":
    """Create a SimpleKVStore from a persist directory."""
    fs = fs or fsspec.filesystem("file")
    if not fs.exists(persist_path):
        raise ValueError(
            f"No existing {__name__} found at {persist_path}, skipping load."
        )

    logger.debug(f"Loading {__name__} from {persist_path}.")
    with fs.open(persist_path, "rb") as f:
        data_dict = json.load(f)
        data = SimpleVectorStoreData.from_dict(data_dict)
    return cls(data)