Skip to content

Opensearch

OpensearchVectorStore #

Bases: BasePydanticVectorStore

Elasticsearch/Opensearch vector store.

Parameters:

Name Type Description Default
client OpensearchVectorClient

Vector index client to use for data insertion/querying.

required

Examples:

pip install llama-index-vector-stores-opensearch

from llama_index.vector_stores.opensearch import (
    OpensearchVectorStore,
    OpensearchVectorClient,
)

# http endpoint for your cluster (opensearch required for vector index usage)
endpoint = "http://localhost:9200"
# index to demonstrate the VectorStore impl
idx = "gpt-index-demo"

# OpensearchVectorClient stores text in this field by default
text_field = "content"
# OpensearchVectorClient stores embeddings in this field by default
embedding_field = "embedding"

# OpensearchVectorClient encapsulates logic for a
# single opensearch index with vector search enabled
client = OpensearchVectorClient(
    endpoint, idx, 1536, embedding_field=embedding_field, text_field=text_field
)

# initialize vector store
vector_store = OpensearchVectorStore(client)
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-opensearch/llama_index/vector_stores/opensearch/base.py
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
class OpensearchVectorStore(BasePydanticVectorStore):
    """
    Elasticsearch/Opensearch vector store.

    Args:
        client (OpensearchVectorClient): Vector index client to use
            for data insertion/querying.

    Examples:
        `pip install llama-index-vector-stores-opensearch`

        ```python
        from llama_index.vector_stores.opensearch import (
            OpensearchVectorStore,
            OpensearchVectorClient,
        )

        # http endpoint for your cluster (opensearch required for vector index usage)
        endpoint = "http://localhost:9200"
        # index to demonstrate the VectorStore impl
        idx = "gpt-index-demo"

        # OpensearchVectorClient stores text in this field by default
        text_field = "content"
        # OpensearchVectorClient stores embeddings in this field by default
        embedding_field = "embedding"

        # OpensearchVectorClient encapsulates logic for a
        # single opensearch index with vector search enabled
        client = OpensearchVectorClient(
            endpoint, idx, 1536, embedding_field=embedding_field, text_field=text_field
        )

        # initialize vector store
        vector_store = OpensearchVectorStore(client)
        ```
    """

    stores_text: bool = True
    _client: OpensearchVectorClient = PrivateAttr(default=None)

    def __init__(
        self,
        client: OpensearchVectorClient,
    ) -> None:
        """Initialize params."""
        super().__init__()
        self._client = client

    @property
    def client(self) -> Any:
        """Get client."""
        return self._client

    def add(
        self,
        nodes: List[BaseNode],
        **add_kwargs: Any,
    ) -> List[str]:
        """
        Add nodes to index.

        Args:
            nodes: List[BaseNode]: list of nodes with embeddings.

        """
        return asyncio.get_event_loop().run_until_complete(
            self.async_add(nodes, **add_kwargs)
        )

    async def async_add(
        self,
        nodes: List[BaseNode],
        **add_kwargs: Any,
    ) -> List[str]:
        """
        Async add nodes to index.

        Args:
            nodes: List[BaseNode]: list of nodes with embeddings.

        """
        await self._client.index_results(nodes)
        return [result.node_id for result in nodes]

    def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
        """
        Delete nodes using a ref_doc_id.

        Args:
            ref_doc_id (str): The doc_id of the document whose nodes should be deleted.

        """
        asyncio.get_event_loop().run_until_complete(
            self.adelete(ref_doc_id, **delete_kwargs)
        )

    async def adelete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
        """
        Async delete nodes using a ref_doc_id.

        Args:
            ref_doc_id (str): The doc_id of the document whose nodes should be deleted.

        """
        await self._client.delete_by_doc_id(ref_doc_id)

    def query(self, query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult:
        """
        Query index for top k most similar nodes.

        Args:
            query (VectorStoreQuery): Store query object.

        """
        return asyncio.get_event_loop().run_until_complete(self.aquery(query, **kwargs))

    async def aquery(
        self, query: VectorStoreQuery, **kwargs: Any
    ) -> VectorStoreQueryResult:
        """
        Async query index for top k most similar nodes.

        Args:
            query (VectorStoreQuery): Store query object.

        """
        query_embedding = cast(List[float], query.query_embedding)

        return await self._client.aquery(
            query.mode,
            query.query_str,
            query_embedding,
            query.similarity_top_k,
            filters=query.filters,
        )

client property #

client: Any

Get client.

add #

add(nodes: List[BaseNode], **add_kwargs: Any) -> List[str]

Add nodes to index.

Parameters:

Name Type Description Default
nodes List[BaseNode]

List[BaseNode]: list of nodes with embeddings.

required
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-opensearch/llama_index/vector_stores/opensearch/base.py
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
def add(
    self,
    nodes: List[BaseNode],
    **add_kwargs: Any,
) -> List[str]:
    """
    Add nodes to index.

    Args:
        nodes: List[BaseNode]: list of nodes with embeddings.

    """
    return asyncio.get_event_loop().run_until_complete(
        self.async_add(nodes, **add_kwargs)
    )

async_add async #

async_add(nodes: List[BaseNode], **add_kwargs: Any) -> List[str]

Async add nodes to index.

Parameters:

Name Type Description Default
nodes List[BaseNode]

List[BaseNode]: list of nodes with embeddings.

required
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-opensearch/llama_index/vector_stores/opensearch/base.py
509
510
511
512
513
514
515
516
517
518
519
520
521
522
async def async_add(
    self,
    nodes: List[BaseNode],
    **add_kwargs: Any,
) -> List[str]:
    """
    Async add nodes to index.

    Args:
        nodes: List[BaseNode]: list of nodes with embeddings.

    """
    await self._client.index_results(nodes)
    return [result.node_id for result in nodes]

delete #

delete(ref_doc_id: str, **delete_kwargs: Any) -> None

Delete nodes using a ref_doc_id.

Parameters:

Name Type Description Default
ref_doc_id str

The doc_id of the document whose nodes should be deleted.

required
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-opensearch/llama_index/vector_stores/opensearch/base.py
524
525
526
527
528
529
530
531
532
533
534
def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
    """
    Delete nodes using a ref_doc_id.

    Args:
        ref_doc_id (str): The doc_id of the document whose nodes should be deleted.

    """
    asyncio.get_event_loop().run_until_complete(
        self.adelete(ref_doc_id, **delete_kwargs)
    )

adelete async #

adelete(ref_doc_id: str, **delete_kwargs: Any) -> None

Async delete nodes using a ref_doc_id.

Parameters:

Name Type Description Default
ref_doc_id str

The doc_id of the document whose nodes should be deleted.

required
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-opensearch/llama_index/vector_stores/opensearch/base.py
536
537
538
539
540
541
542
543
544
async def adelete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
    """
    Async delete nodes using a ref_doc_id.

    Args:
        ref_doc_id (str): The doc_id of the document whose nodes should be deleted.

    """
    await self._client.delete_by_doc_id(ref_doc_id)

query #

query(query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult

Query index for top k most similar nodes.

Parameters:

Name Type Description Default
query VectorStoreQuery

Store query object.

required
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-opensearch/llama_index/vector_stores/opensearch/base.py
546
547
548
549
550
551
552
553
554
def query(self, query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult:
    """
    Query index for top k most similar nodes.

    Args:
        query (VectorStoreQuery): Store query object.

    """
    return asyncio.get_event_loop().run_until_complete(self.aquery(query, **kwargs))

aquery async #

aquery(query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult

Async query index for top k most similar nodes.

Parameters:

Name Type Description Default
query VectorStoreQuery

Store query object.

required
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-opensearch/llama_index/vector_stores/opensearch/base.py
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
async def aquery(
    self, query: VectorStoreQuery, **kwargs: Any
) -> VectorStoreQueryResult:
    """
    Async query index for top k most similar nodes.

    Args:
        query (VectorStoreQuery): Store query object.

    """
    query_embedding = cast(List[float], query.query_embedding)

    return await self._client.aquery(
        query.mode,
        query.query_str,
        query_embedding,
        query.similarity_top_k,
        filters=query.filters,
    )