Skip to content

Neo4jvector

Neo4jVectorStore #

Bases: VectorStore

Neo4j Vector Store.

Examples:

pip install llama-index-vector-stores-neo4jvector

from llama_index.vector_stores.neo4jvector import Neo4jVectorStore

username = "neo4j"
password = "pleaseletmein"
url = "bolt://localhost:7687"
embed_dim = 1536

neo4j_vector = Neo4jVectorStore(username, password, url, embed_dim)
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-neo4jvector/llama_index/vector_stores/neo4jvector/base.py
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
class Neo4jVectorStore(VectorStore):
    """Neo4j Vector Store.

    Examples:
        `pip install llama-index-vector-stores-neo4jvector`


        ```python
        from llama_index.vector_stores.neo4jvector import Neo4jVectorStore

        username = "neo4j"
        password = "pleaseletmein"
        url = "bolt://localhost:7687"
        embed_dim = 1536

        neo4j_vector = Neo4jVectorStore(username, password, url, embed_dim)
        ```
    """

    stores_text: bool = True
    flat_metadata = True

    def __init__(
        self,
        username: str,
        password: str,
        url: str,
        embedding_dimension: int,
        database: str = "neo4j",
        index_name: str = "vector",
        keyword_index_name: str = "keyword",
        node_label: str = "Chunk",
        embedding_node_property: str = "embedding",
        text_node_property: str = "text",
        distance_strategy: str = "cosine",
        hybrid_search: bool = False,
        retrieval_query: str = "",
        **kwargs: Any,
    ) -> None:
        if distance_strategy not in ["cosine", "euclidean"]:
            raise ValueError("distance_strategy must be either 'euclidean' or 'cosine'")

        self._driver = neo4j.GraphDatabase.driver(url, auth=(username, password))
        self._database = database

        # Verify connection
        try:
            self._driver.verify_connectivity()
        except neo4j.exceptions.ServiceUnavailable:
            raise ValueError(
                "Could not connect to Neo4j database. "
                "Please ensure that the url is correct"
            )
        except neo4j.exceptions.AuthError:
            raise ValueError(
                "Could not connect to Neo4j database. "
                "Please ensure that the username and password are correct"
            )

        # Verify if the version support vector index
        self._verify_version()

        # Verify that required values are not null
        check_if_not_null(
            [
                "index_name",
                "node_label",
                "embedding_node_property",
                "text_node_property",
            ],
            [index_name, node_label, embedding_node_property, text_node_property],
        )

        self.distance_strategy = distance_strategy
        self.index_name = index_name
        self.keyword_index_name = keyword_index_name
        self.hybrid_search = hybrid_search
        self.node_label = node_label
        self.embedding_node_property = embedding_node_property
        self.text_node_property = text_node_property
        self.retrieval_query = retrieval_query
        self.embedding_dimension = embedding_dimension

        index_already_exists = self.retrieve_existing_index()
        if not index_already_exists:
            self.create_new_index()
        if hybrid_search:
            fts_node_label = self.retrieve_existing_fts_index()
            # If the FTS index doesn't exist yet
            if not fts_node_label:
                self.create_new_keyword_index()
            else:  # Validate that FTS and Vector index use the same information
                if not fts_node_label == self.node_label:
                    raise ValueError(
                        "Vector and keyword index don't index the same node label"
                    )

    def _verify_version(self) -> None:
        """
        Check if the connected Neo4j database version supports vector indexing.

        Queries the Neo4j database to retrieve its version and compares it
        against a target version (5.11.0) that is known to support vector
        indexing. Raises a ValueError if the connected Neo4j version is
        not supported.
        """
        version = self.database_query("CALL dbms.components()")[0]["versions"][0]
        if "aura" in version:
            version_tuple = (*tuple(map(int, version.split("-")[0].split("."))), 0)
        else:
            version_tuple = tuple(map(int, version.split(".")))

        target_version = (5, 11, 0)

        if version_tuple < target_version:
            raise ValueError(
                "Version index is only supported in Neo4j version 5.11 or greater"
            )

    def create_new_index(self) -> None:
        """
        This method constructs a Cypher query and executes it
        to create a new vector index in Neo4j.
        """
        index_query = (
            "CALL db.index.vector.createNodeIndex("
            "$index_name,"
            "$node_label,"
            "$embedding_node_property,"
            "toInteger($embedding_dimension),"
            "$similarity_metric )"
        )

        parameters = {
            "index_name": self.index_name,
            "node_label": self.node_label,
            "embedding_node_property": self.embedding_node_property,
            "embedding_dimension": self.embedding_dimension,
            "similarity_metric": self.distance_strategy,
        }
        self.database_query(index_query, params=parameters)

    def retrieve_existing_index(self) -> bool:
        """
        Check if the vector index exists in the Neo4j database
        and returns its embedding dimension.

        This method queries the Neo4j database for existing indexes
        and attempts to retrieve the dimension of the vector index
        with the specified name. If the index exists, its dimension is returned.
        If the index doesn't exist, `None` is returned.

        Returns:
            int or None: The embedding dimension of the existing index if found.
        """
        index_information = self.database_query(
            "SHOW INDEXES YIELD name, type, labelsOrTypes, properties, options "
            "WHERE type = 'VECTOR' AND (name = $index_name "
            "OR (labelsOrTypes[0] = $node_label AND "
            "properties[0] = $embedding_node_property)) "
            "RETURN name, labelsOrTypes, properties, options ",
            params={
                "index_name": self.index_name,
                "node_label": self.node_label,
                "embedding_node_property": self.embedding_node_property,
            },
        )
        # sort by index_name
        index_information = sort_by_index_name(index_information, self.index_name)
        try:
            self.index_name = index_information[0]["name"]
            self.node_label = index_information[0]["labelsOrTypes"][0]
            self.embedding_node_property = index_information[0]["properties"][0]
            self.embedding_dimension = index_information[0]["options"]["indexConfig"][
                "vector.dimensions"
            ]

            return True
        except IndexError:
            return False

    def retrieve_existing_fts_index(self) -> Optional[str]:
        """Check if the fulltext index exists in the Neo4j database.

        This method queries the Neo4j database for existing fts indexes
        with the specified name.

        Returns:
            (Tuple): keyword index information
        """
        index_information = self.database_query(
            "SHOW INDEXES YIELD name, type, labelsOrTypes, properties, options "
            "WHERE type = 'FULLTEXT' AND (name = $keyword_index_name "
            "OR (labelsOrTypes = [$node_label] AND "
            "properties = $text_node_property)) "
            "RETURN name, labelsOrTypes, properties, options ",
            params={
                "keyword_index_name": self.keyword_index_name,
                "node_label": self.node_label,
                "text_node_property": self.text_node_property,
            },
        )
        # sort by index_name
        index_information = sort_by_index_name(index_information, self.index_name)
        try:
            self.keyword_index_name = index_information[0]["name"]
            self.text_node_property = index_information[0]["properties"][0]
            return index_information[0]["labelsOrTypes"][0]
        except IndexError:
            return None

    def create_new_keyword_index(self, text_node_properties: List[str] = []) -> None:
        """
        This method constructs a Cypher query and executes it
        to create a new full text index in Neo4j.
        """
        node_props = text_node_properties or [self.text_node_property]
        fts_index_query = (
            f"CREATE FULLTEXT INDEX {self.keyword_index_name} "
            f"FOR (n:`{self.node_label}`) ON EACH "
            f"[{', '.join(['n.`' + el + '`' for el in node_props])}]"
        )
        self.database_query(fts_index_query)

    def database_query(
        self, query: str, params: Optional[dict] = None
    ) -> List[Dict[str, Any]]:
        """
        This method sends a Cypher query to the connected Neo4j database
        and returns the results as a list of dictionaries.

        Args:
            query (str): The Cypher query to execute.
            params (dict, optional): Dictionary of query parameters. Defaults to {}.

        Returns:
            List[Dict[str, Any]]: List of dictionaries containing the query results.
        """
        params = params or {}
        with self._driver.session(database=self._database) as session:
            try:
                data = session.run(query, params)
                return [r.data() for r in data]
            except CypherSyntaxError as e:
                raise ValueError(f"Cypher Statement is not valid\n{e}")

    def add(self, nodes: List[BaseNode], **add_kwargs: Any) -> List[str]:
        ids = [r.node_id for r in nodes]
        import_query = (
            "UNWIND $data AS row "
            "CALL { WITH row "
            f"MERGE (c:`{self.node_label}` {{id: row.id}}) "
            "WITH c, row "
            f"CALL db.create.setVectorProperty(c, "
            f"'{self.embedding_node_property}', row.embedding) "
            "YIELD node "
            f"SET c.`{self.text_node_property}` = row.text "
            "SET c += row.metadata } IN TRANSACTIONS OF 1000 ROWS"
        )

        self.database_query(
            import_query,
            params={"data": clean_params(nodes)},
        )

        return ids

    def query(self, query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult:
        default_retrieval = (
            f"RETURN node.`{self.text_node_property}` AS text, score, "
            "node.id AS id, "
            f"node {{.*, `{self.text_node_property}`: Null, "
            f"`{self.embedding_node_property}`: Null, id: Null }} AS metadata"
        )

        retrieval_query = self.retrieval_query or default_retrieval
        read_query = _get_search_index_query(self.hybrid_search) + retrieval_query

        parameters = {
            "index": self.index_name,
            "k": query.similarity_top_k,
            "embedding": query.query_embedding,
            "keyword_index": self.keyword_index_name,
            "query": remove_lucene_chars(query.query_str),
        }

        results = self.database_query(read_query, params=parameters)

        nodes = []
        similarities = []
        ids = []
        for record in results:
            node = metadata_dict_to_node(record["metadata"])
            node.set_content(str(record["text"]))
            nodes.append(node)
            similarities.append(record["score"])
            ids.append(record["id"])

        return VectorStoreQueryResult(nodes=nodes, similarities=similarities, ids=ids)

    def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
        self.database_query(
            f"MATCH (n:`{self.node_label}`) WHERE n.ref_doc_id = $id DETACH DELETE n",
            params={"id": ref_doc_id},
        )

create_new_index #

create_new_index() -> None

This method constructs a Cypher query and executes it to create a new vector index in Neo4j.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-neo4jvector/llama_index/vector_stores/neo4jvector/base.py
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
def create_new_index(self) -> None:
    """
    This method constructs a Cypher query and executes it
    to create a new vector index in Neo4j.
    """
    index_query = (
        "CALL db.index.vector.createNodeIndex("
        "$index_name,"
        "$node_label,"
        "$embedding_node_property,"
        "toInteger($embedding_dimension),"
        "$similarity_metric )"
    )

    parameters = {
        "index_name": self.index_name,
        "node_label": self.node_label,
        "embedding_node_property": self.embedding_node_property,
        "embedding_dimension": self.embedding_dimension,
        "similarity_metric": self.distance_strategy,
    }
    self.database_query(index_query, params=parameters)

retrieve_existing_index #

retrieve_existing_index() -> bool

Check if the vector index exists in the Neo4j database and returns its embedding dimension.

This method queries the Neo4j database for existing indexes and attempts to retrieve the dimension of the vector index with the specified name. If the index exists, its dimension is returned. If the index doesn't exist, None is returned.

Returns:

Type Description
bool

int or None: The embedding dimension of the existing index if found.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-neo4jvector/llama_index/vector_stores/neo4jvector/base.py
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
def retrieve_existing_index(self) -> bool:
    """
    Check if the vector index exists in the Neo4j database
    and returns its embedding dimension.

    This method queries the Neo4j database for existing indexes
    and attempts to retrieve the dimension of the vector index
    with the specified name. If the index exists, its dimension is returned.
    If the index doesn't exist, `None` is returned.

    Returns:
        int or None: The embedding dimension of the existing index if found.
    """
    index_information = self.database_query(
        "SHOW INDEXES YIELD name, type, labelsOrTypes, properties, options "
        "WHERE type = 'VECTOR' AND (name = $index_name "
        "OR (labelsOrTypes[0] = $node_label AND "
        "properties[0] = $embedding_node_property)) "
        "RETURN name, labelsOrTypes, properties, options ",
        params={
            "index_name": self.index_name,
            "node_label": self.node_label,
            "embedding_node_property": self.embedding_node_property,
        },
    )
    # sort by index_name
    index_information = sort_by_index_name(index_information, self.index_name)
    try:
        self.index_name = index_information[0]["name"]
        self.node_label = index_information[0]["labelsOrTypes"][0]
        self.embedding_node_property = index_information[0]["properties"][0]
        self.embedding_dimension = index_information[0]["options"]["indexConfig"][
            "vector.dimensions"
        ]

        return True
    except IndexError:
        return False

retrieve_existing_fts_index #

retrieve_existing_fts_index() -> Optional[str]

Check if the fulltext index exists in the Neo4j database.

This method queries the Neo4j database for existing fts indexes with the specified name.

Returns:

Type Description
Tuple

keyword index information

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-neo4jvector/llama_index/vector_stores/neo4jvector/base.py
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
def retrieve_existing_fts_index(self) -> Optional[str]:
    """Check if the fulltext index exists in the Neo4j database.

    This method queries the Neo4j database for existing fts indexes
    with the specified name.

    Returns:
        (Tuple): keyword index information
    """
    index_information = self.database_query(
        "SHOW INDEXES YIELD name, type, labelsOrTypes, properties, options "
        "WHERE type = 'FULLTEXT' AND (name = $keyword_index_name "
        "OR (labelsOrTypes = [$node_label] AND "
        "properties = $text_node_property)) "
        "RETURN name, labelsOrTypes, properties, options ",
        params={
            "keyword_index_name": self.keyword_index_name,
            "node_label": self.node_label,
            "text_node_property": self.text_node_property,
        },
    )
    # sort by index_name
    index_information = sort_by_index_name(index_information, self.index_name)
    try:
        self.keyword_index_name = index_information[0]["name"]
        self.text_node_property = index_information[0]["properties"][0]
        return index_information[0]["labelsOrTypes"][0]
    except IndexError:
        return None

create_new_keyword_index #

create_new_keyword_index(text_node_properties: List[str] = []) -> None

This method constructs a Cypher query and executes it to create a new full text index in Neo4j.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-neo4jvector/llama_index/vector_stores/neo4jvector/base.py
314
315
316
317
318
319
320
321
322
323
324
325
def create_new_keyword_index(self, text_node_properties: List[str] = []) -> None:
    """
    This method constructs a Cypher query and executes it
    to create a new full text index in Neo4j.
    """
    node_props = text_node_properties or [self.text_node_property]
    fts_index_query = (
        f"CREATE FULLTEXT INDEX {self.keyword_index_name} "
        f"FOR (n:`{self.node_label}`) ON EACH "
        f"[{', '.join(['n.`' + el + '`' for el in node_props])}]"
    )
    self.database_query(fts_index_query)

database_query #

database_query(query: str, params: Optional[dict] = None) -> List[Dict[str, Any]]

This method sends a Cypher query to the connected Neo4j database and returns the results as a list of dictionaries.

Parameters:

Name Type Description Default
query str

The Cypher query to execute.

required
params dict

Dictionary of query parameters. Defaults to {}.

None

Returns:

Type Description
List[Dict[str, Any]]

List[Dict[str, Any]]: List of dictionaries containing the query results.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-neo4jvector/llama_index/vector_stores/neo4jvector/base.py
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
def database_query(
    self, query: str, params: Optional[dict] = None
) -> List[Dict[str, Any]]:
    """
    This method sends a Cypher query to the connected Neo4j database
    and returns the results as a list of dictionaries.

    Args:
        query (str): The Cypher query to execute.
        params (dict, optional): Dictionary of query parameters. Defaults to {}.

    Returns:
        List[Dict[str, Any]]: List of dictionaries containing the query results.
    """
    params = params or {}
    with self._driver.session(database=self._database) as session:
        try:
            data = session.run(query, params)
            return [r.data() for r in data]
        except CypherSyntaxError as e:
            raise ValueError(f"Cypher Statement is not valid\n{e}")