Mongodb
MongoDBAtlasVectorSearch #
Bases: BasePydanticVectorStore
MongoDB Atlas Vector Store.
To use, you should have both:
- the pymongo
python package installed
- a connection string associated with a MongoDB Atlas Cluster
that has an Atlas Vector Search index
To get started head over to the Atlas quick start.
Once your store is created, be sure to enable indexing in the Atlas GUI.
Please refer to the documentation to get more details on how to define an Atlas Vector Search index. You can name the index {ATLAS_VECTOR_SEARCH_INDEX_NAME} and create the index on the namespace {DB_NAME}.{COLLECTION_NAME}. Finally, write the following definition in the JSON editor on MongoDB Atlas:
{
"name": "index_name",
"type": "vectorSearch",
"fields":[
{
"type": "vector",
"path": "embedding",
"numDimensions": 1536,
"similarity": "cosine"
}
]
}
Examples:
pip install llama-index-vector-stores-mongodb
import pymongo
from llama_index.vector_stores.mongodb import MongoDBAtlasVectorSearch
# Ensure you have the MongoDB URI with appropriate credentials
mongo_uri = "mongodb+srv://<username>:<password>@<host>?retryWrites=true&w=majority"
mongodb_client = pymongo.MongoClient(mongo_uri)
# Create an instance of MongoDBAtlasVectorSearch
vector_store = MongoDBAtlasVectorSearch(mongodb_client)
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-mongodb/llama_index/vector_stores/mongodb/base.py
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
|
add #
add(nodes: List[BaseNode], **add_kwargs: Any) -> List[str]
Add nodes to index.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
nodes |
List[BaseNode]
|
List[BaseNode]: list of nodes with embeddings |
required |
Returns:
Type | Description |
---|---|
List[str]
|
A List of ids for successfully added nodes. |
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-mongodb/llama_index/vector_stores/mongodb/base.py
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
|
delete #
delete(ref_doc_id: str, **delete_kwargs: Any) -> None
Delete nodes using with ref_doc_id.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ref_doc_id |
str
|
The doc_id of the document to delete. |
required |
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-mongodb/llama_index/vector_stores/mongodb/base.py
187 188 189 190 191 192 193 194 195 196 197 198 |
|
query #
query(query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult
Query index for top k most similar nodes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query |
VectorStoreQuery
|
a VectorStoreQuery object. |
required |
Returns:
Type | Description |
---|---|
VectorStoreQueryResult
|
A VectorStoreQueryResult containing the results of the query. |
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-mongodb/llama_index/vector_stores/mongodb/base.py
265 266 267 268 269 270 271 272 273 274 |
|