Skip to content

Lancedb

LanceDBVectorStore #

Bases: BasePydanticVectorStore

The LanceDB Vector Store.

Stores text and embeddings in LanceDB. The vector store will open an existing LanceDB dataset or create the dataset if it does not exist.

Parameters:

Name Type Description Default
uri (str, required)

Location where LanceDB will store its files.

required
table_name str

The table name where the embeddings will be stored. Defaults to "vectors".

'vectors'
vector_column_name str

The vector column name in the table if different from default. Defaults to "vector", in keeping with lancedb convention.

'vector'
nprobes int

The number of probes used. A higher number makes search more accurate but also slower. Defaults to 20.

20
refine_factor Optional[int]

(int, optional): Refine the results by reading extra elements and re-ranking them in memory. Defaults to None

None

Raises:

Type Description
ImportError

Unable to import lancedb.

Returns:

Name Type Description
LanceDBVectorStore

VectorStore that supports creating LanceDB datasets and querying it.

Examples:

pip install llama-index-vector-stores-lancedb

from llama_index.vector_stores.lancedb import LanceDBVectorStore

vector_store = LanceDBVectorStore(uri="/tmp/lancedb")
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-lancedb/llama_index/vector_stores/lancedb/base.py
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
class LanceDBVectorStore(BasePydanticVectorStore):
    """
    The LanceDB Vector Store.

    Stores text and embeddings in LanceDB. The vector store will open an existing
        LanceDB dataset or create the dataset if it does not exist.

    Args:
        uri (str, required): Location where LanceDB will store its files.
        table_name (str, optional): The table name where the embeddings will be stored.
            Defaults to "vectors".
        vector_column_name (str, optional): The vector column name in the table if different from default.
            Defaults to "vector", in keeping with lancedb convention.
        nprobes (int, optional): The number of probes used.
            A higher number makes search more accurate but also slower.
            Defaults to 20.
        refine_factor: (int, optional): Refine the results by reading extra elements
            and re-ranking them in memory.
            Defaults to None

    Raises:
        ImportError: Unable to import `lancedb`.

    Returns:
        LanceDBVectorStore: VectorStore that supports creating LanceDB datasets and
            querying it.

    Examples:
        `pip install llama-index-vector-stores-lancedb`

        ```python
        from llama_index.vector_stores.lancedb import LanceDBVectorStore

        vector_store = LanceDBVectorStore(uri="/tmp/lancedb")
        ```
    """

    stores_text = True
    flat_metadata: bool = True
    _connection: Any = PrivateAttr()
    uri: Optional[str]
    table_name: Optional[str]
    vector_column_name: Optional[str]
    nprobes: Optional[int]
    refine_factor: Optional[int]
    text_key: Optional[str]
    doc_id_key: Optional[str]

    def __init__(
        self,
        uri: Optional[str],
        table_name: str = "vectors",
        vector_column_name: str = "vector",
        nprobes: int = 20,
        refine_factor: Optional[int] = None,
        text_key: str = DEFAULT_TEXT_KEY,
        doc_id_key: str = DEFAULT_DOC_ID_KEY,
        **kwargs: Any,
    ) -> None:
        """Init params."""
        self._connection = lancedb.connect(uri)
        super().__init__(
            uri=uri,
            table_name=table_name,
            vector_column_name=vector_column_name,
            nprobes=nprobes,
            refine_factor=refine_factor,
            text_key=text_key,
            doc_id_key=doc_id_key,
            **kwargs,
        )

    @property
    def client(self) -> None:
        """Get client."""
        return self._connection

    @classmethod
    def from_params(
        cls,
        uri: Optional[str],
        table_name: str = "vectors",
        vector_column_name: str = "vector",
        nprobes: int = 20,
        refine_factor: Optional[int] = None,
        text_key: str = DEFAULT_TEXT_KEY,
        doc_id_key: str = DEFAULT_DOC_ID_KEY,
        **kwargs: Any,
    ) -> "LanceDBVectorStore":
        """Create instance from params."""
        _connection_ = cls._connection
        return cls(
            _connection=_connection_,
            uri=uri,
            table_name=table_name,
            vector_column_name=vector_column_name,
            nprobes=nprobes,
            refine_factor=refine_factor,
            text_key=text_key,
            doc_id_key=doc_id_key,
            **kwargs,
        )

    def add(
        self,
        nodes: List[BaseNode],
        **add_kwargs: Any,
    ) -> List[str]:
        if not nodes:
            _logger.debug("No nodes to add. Skipping the database operation.")
            return []
        data = []
        ids = []
        for node in nodes:
            metadata = node_to_metadata_dict(
                node, remove_text=False, flat_metadata=self.flat_metadata
            )
            append_data = {
                "id": node.node_id,
                "doc_id": node.ref_doc_id,
                "vector": node.get_embedding(),
                "text": node.get_content(metadata_mode=MetadataMode.NONE),
                "metadata": metadata,
            }
            data.append(append_data)
            ids.append(node.node_id)

        if self.table_name in self._connection.table_names():
            tbl = self._connection.open_table(self.table_name)
            tbl.add(data)
        else:
            self._connection.create_table(self.table_name, data)
        return ids

    def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
        """
        Delete nodes using with ref_doc_id.

        Args:
            ref_doc_id (str): The doc_id of the document to delete.

        """
        table = self._connection.open_table(self.table_name)
        table.delete('doc_id = "' + ref_doc_id + '"')

    def query(
        self,
        query: VectorStoreQuery,
        **kwargs: Any,
    ) -> VectorStoreQueryResult:
        """Query index for top k most similar nodes."""
        if query.filters is not None:
            if "where" in kwargs:
                raise ValueError(
                    "Cannot specify filter via both query and kwargs. "
                    "Use kwargs only for lancedb specific items that are "
                    "not supported via the generic query interface."
                )
            where = _to_lance_filter(query.filters)
        else:
            where = kwargs.pop("where", None)

        table = self._connection.open_table(self.table_name)
        lance_query = (
            table.search(
                query=query.query_embedding,
                vector_column_name=self.vector_column_name,
            )
            .limit(query.similarity_top_k)
            .where(where)
            .nprobes(self.nprobes)
        )

        if self.refine_factor is not None:
            lance_query.refine_factor(self.refine_factor)

        results = lance_query.to_pandas()
        nodes = []
        for _, item in results.iterrows():
            try:
                node = metadata_dict_to_node(item.metadata)
                node.embedding = list(item[self.vector_column_name])
            except Exception:
                # deprecated legacy logic for backward compatibility
                _logger.debug(
                    "Failed to parse Node metadata, fallback to legacy logic."
                )
                if "metadata" in item:
                    metadata, node_info, _relation = legacy_metadata_dict_to_node(
                        item.metadata, text_key=self.text_key
                    )
                else:
                    metadata, node_info = {}, {}
                node = TextNode(
                    text=item[self.text_key] or "",
                    id_=item.id,
                    metadata=metadata,
                    start_char_idx=node_info.get("start", None),
                    end_char_idx=node_info.get("end", None),
                    relationships={
                        NodeRelationship.SOURCE: RelatedNodeInfo(
                            node_id=item[self.doc_id_key]
                        ),
                    },
                )

            nodes.append(node)

        return VectorStoreQueryResult(
            nodes=nodes,
            similarities=_to_llama_similarities(results),
            ids=results["id"].tolist(),
        )

client property #

client: None

Get client.

from_params classmethod #

from_params(uri: Optional[str], table_name: str = 'vectors', vector_column_name: str = 'vector', nprobes: int = 20, refine_factor: Optional[int] = None, text_key: str = DEFAULT_TEXT_KEY, doc_id_key: str = DEFAULT_DOC_ID_KEY, **kwargs: Any) -> LanceDBVectorStore

Create instance from params.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-lancedb/llama_index/vector_stores/lancedb/base.py
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
@classmethod
def from_params(
    cls,
    uri: Optional[str],
    table_name: str = "vectors",
    vector_column_name: str = "vector",
    nprobes: int = 20,
    refine_factor: Optional[int] = None,
    text_key: str = DEFAULT_TEXT_KEY,
    doc_id_key: str = DEFAULT_DOC_ID_KEY,
    **kwargs: Any,
) -> "LanceDBVectorStore":
    """Create instance from params."""
    _connection_ = cls._connection
    return cls(
        _connection=_connection_,
        uri=uri,
        table_name=table_name,
        vector_column_name=vector_column_name,
        nprobes=nprobes,
        refine_factor=refine_factor,
        text_key=text_key,
        doc_id_key=doc_id_key,
        **kwargs,
    )

delete #

delete(ref_doc_id: str, **delete_kwargs: Any) -> None

Delete nodes using with ref_doc_id.

Parameters:

Name Type Description Default
ref_doc_id str

The doc_id of the document to delete.

required
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-lancedb/llama_index/vector_stores/lancedb/base.py
192
193
194
195
196
197
198
199
200
201
def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
    """
    Delete nodes using with ref_doc_id.

    Args:
        ref_doc_id (str): The doc_id of the document to delete.

    """
    table = self._connection.open_table(self.table_name)
    table.delete('doc_id = "' + ref_doc_id + '"')

query #

query(query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult

Query index for top k most similar nodes.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-lancedb/llama_index/vector_stores/lancedb/base.py
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
def query(
    self,
    query: VectorStoreQuery,
    **kwargs: Any,
) -> VectorStoreQueryResult:
    """Query index for top k most similar nodes."""
    if query.filters is not None:
        if "where" in kwargs:
            raise ValueError(
                "Cannot specify filter via both query and kwargs. "
                "Use kwargs only for lancedb specific items that are "
                "not supported via the generic query interface."
            )
        where = _to_lance_filter(query.filters)
    else:
        where = kwargs.pop("where", None)

    table = self._connection.open_table(self.table_name)
    lance_query = (
        table.search(
            query=query.query_embedding,
            vector_column_name=self.vector_column_name,
        )
        .limit(query.similarity_top_k)
        .where(where)
        .nprobes(self.nprobes)
    )

    if self.refine_factor is not None:
        lance_query.refine_factor(self.refine_factor)

    results = lance_query.to_pandas()
    nodes = []
    for _, item in results.iterrows():
        try:
            node = metadata_dict_to_node(item.metadata)
            node.embedding = list(item[self.vector_column_name])
        except Exception:
            # deprecated legacy logic for backward compatibility
            _logger.debug(
                "Failed to parse Node metadata, fallback to legacy logic."
            )
            if "metadata" in item:
                metadata, node_info, _relation = legacy_metadata_dict_to_node(
                    item.metadata, text_key=self.text_key
                )
            else:
                metadata, node_info = {}, {}
            node = TextNode(
                text=item[self.text_key] or "",
                id_=item.id,
                metadata=metadata,
                start_char_idx=node_info.get("start", None),
                end_char_idx=node_info.get("end", None),
                relationships={
                    NodeRelationship.SOURCE: RelatedNodeInfo(
                        node_id=item[self.doc_id_key]
                    ),
                },
            )

        nodes.append(node)

    return VectorStoreQueryResult(
        nodes=nodes,
        similarities=_to_llama_similarities(results),
        ids=results["id"].tolist(),
    )