Skip to content

Kdbai

KDBAIVectorStore #

Bases: BasePydanticVectorStore

The KDBAI Vector Store.

In this vector store we store the text, its embedding and its metadata in a KDBAI vector store table. This implementation allows the use of an already existing table.

Parameters:

Name Type Description Default
table Table

The KDB.AI table to use as storage.

None
batch int

batch size to insert data. Default is 100.

required

Returns:

Name Type Description
KDBAIVectorStore

Vectorstore that supports add and query.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-kdbai/llama_index/vector_stores/kdbai/base.py
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
class KDBAIVectorStore(BasePydanticVectorStore):
    """The KDBAI Vector Store.

    In this vector store we store the text, its embedding and
    its metadata in a KDBAI vector store table. This implementation
    allows the use of an already existing table.

    Args:
        table kdbai.Table: The KDB.AI table to use as storage.
        batch (int, optional): batch size to insert data.
            Default is 100.

    Returns:
        KDBAIVectorStore: Vectorstore that supports add and query.
    """

    stores_text: bool = True
    flat_metadata: bool = True

    hybrid_search: bool = False
    batch_size: int

    _table: Any = PrivateAttr()
    _sparse_encoder: Optional[Callable] = PrivateAttr()

    def __init__(
        self,
        table: Any = None,
        hybrid_search: bool = False,
        sparse_encoder: Optional[Callable] = None,
        batch_size: int = DEFAULT_BATCH_SIZE,
        **kwargs: Any,
    ) -> None:
        """Initialize params."""
        try:
            import kdbai_client as kdbai

            logger.info("KDBAI client version: " + kdbai.__version__)

        except ImportError:
            raise ValueError(
                "Could not import kdbai_client package."
                "Please add it to the dependencies."
            )

        if table is None:
            raise ValueError("Must provide an existing KDB.AI table.")
        else:
            self._table = table

        if hybrid_search:
            if sparse_encoder is None:
                self._sparse_encoder = default_sparse_encoder
            else:
                self._sparse_encoder = sparse_encoder

        super().__init__(batch_size=batch_size, hybrid_search=hybrid_search)

    @property
    def client(self) -> Any:
        """Return KDB.AI client."""
        return self._table

    @classmethod
    def class_name(cls) -> str:
        return "KDBAIVectorStore"

    def add(
        self,
        nodes: List[BaseNode],
        **add_kwargs: Any,
    ) -> List[str]:
        """Add nodes to the KDBAI Vector Store.

        Args:
            nodes (List[BaseNode]): List of nodes to be added.

        Returns:
            List[str]: List of document IDs that were added.
        """
        df = pd.DataFrame()
        docs = []
        schema = self._table.schema()["columns"]
        if self.hybrid_search:
            schema = [item for item in schema if item["name"] != "sparseVectors"]

        try:
            for node in nodes:
                doc = {
                    "document_id": node.node_id.encode("utf-8"),
                    "text": node.text.encode("utf-8"),
                    "embedding": node.embedding,
                }

                if self.hybrid_search:
                    doc["sparseVectors"] = self._sparse_encoder([node.get_content()])

                # handle extra columns
                if len(schema) > len(DEFAULT_COLUMN_NAMES):
                    for column in schema[len(DEFAULT_COLUMN_NAMES) :]:
                        try:
                            doc[column["name"]] = convert_metadata_col(
                                column, node.metadata[column["name"]]
                            )
                        except Exception as e:
                            logger.error(
                                f"Error writing column {column['name']} as type {column['pytype']}: {e}."
                            )

                docs.append(doc)

            df = pd.DataFrame(docs)
            for i in range((len(df) - 1) // self.batch_size + 1):
                batch = df.iloc[i * self.batch_size : (i + 1) * self.batch_size]
                try:
                    self._table.insert(batch, warn=False)
                    logger.info(f"inserted batch {i}")
                except Exception as e:
                    logger.exception(
                        f"Failed to insert batch {i} of documents into the datastore: {e}"
                    )

            return List(df["document_id"])

        except Exception as e:
            logger.error(f"Error preparing data for KDB.AI: {e}.")

    def query(self, query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult:
        if query.filters is None:
            filter = []
        else:
            filter = query.filters

        if self.hybrid_search:
            alpha = query.alpha if query.alpha is not None else 0.5
            sparse_vectors = self._sparse_encoder([query.query_str])
            results = self._table.hybrid_search(
                dense_vectors=[query.query_embedding],
                sparse_vectors=sparse_vectors,
                n=query.similarity_top_k,
                filter=filter,
                alpha=alpha,
            )[0]
        else:
            results = self._table.search(
                vectors=[query.query_embedding], n=query.similarity_top_k, filter=filter
            )[0]

        top_k_nodes = []
        top_k_ids = []
        top_k_scores = []

        for result in results.to_dict(orient="records"):
            metadata = {x: result[x] for x in result if x not in DEFAULT_COLUMN_NAMES}
            node = TextNode(
                text=result["text"], id_=result["document_id"], metadata=metadata
            )
            top_k_ids.append(result["document_id"])
            top_k_nodes.append(node)
            top_k_scores.append(result["__nn_distance"])

        return VectorStoreQueryResult(
            nodes=top_k_nodes, similarities=top_k_scores, ids=top_k_ids
        )

    def delete(self, **delete_kwargs: Any) -> None:
        raise Exception("Not implemented.")

client property #

client: Any

Return KDB.AI client.

add #

add(nodes: List[BaseNode], **add_kwargs: Any) -> List[str]

Add nodes to the KDBAI Vector Store.

Parameters:

Name Type Description Default
nodes List[BaseNode]

List of nodes to be added.

required

Returns:

Type Description
List[str]

List[str]: List of document IDs that were added.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-kdbai/llama_index/vector_stores/kdbai/base.py
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
def add(
    self,
    nodes: List[BaseNode],
    **add_kwargs: Any,
) -> List[str]:
    """Add nodes to the KDBAI Vector Store.

    Args:
        nodes (List[BaseNode]): List of nodes to be added.

    Returns:
        List[str]: List of document IDs that were added.
    """
    df = pd.DataFrame()
    docs = []
    schema = self._table.schema()["columns"]
    if self.hybrid_search:
        schema = [item for item in schema if item["name"] != "sparseVectors"]

    try:
        for node in nodes:
            doc = {
                "document_id": node.node_id.encode("utf-8"),
                "text": node.text.encode("utf-8"),
                "embedding": node.embedding,
            }

            if self.hybrid_search:
                doc["sparseVectors"] = self._sparse_encoder([node.get_content()])

            # handle extra columns
            if len(schema) > len(DEFAULT_COLUMN_NAMES):
                for column in schema[len(DEFAULT_COLUMN_NAMES) :]:
                    try:
                        doc[column["name"]] = convert_metadata_col(
                            column, node.metadata[column["name"]]
                        )
                    except Exception as e:
                        logger.error(
                            f"Error writing column {column['name']} as type {column['pytype']}: {e}."
                        )

            docs.append(doc)

        df = pd.DataFrame(docs)
        for i in range((len(df) - 1) // self.batch_size + 1):
            batch = df.iloc[i * self.batch_size : (i + 1) * self.batch_size]
            try:
                self._table.insert(batch, warn=False)
                logger.info(f"inserted batch {i}")
            except Exception as e:
                logger.exception(
                    f"Failed to insert batch {i} of documents into the datastore: {e}"
                )

        return List(df["document_id"])

    except Exception as e:
        logger.error(f"Error preparing data for KDB.AI: {e}.")