Deeplake
DeepLakeVectorStore #
Bases: BasePydanticVectorStore
The DeepLake Vector Store.
In this vector store we store the text, its embedding and
a few pieces of its metadata in a deeplake dataset. This implementation
allows the use of an already existing deeplake dataset if it is one that was created
this vector store. It also supports creating a new one if the dataset doesn't
exist or if overwrite
is set to True.
Examples:
pip install llama-index-vector-stores-deeplake
from llama_index.vector_stores.deeplake import DeepLakeVectorStore
# Create an instance of DeepLakeVectorStore
vector_store = DeepLakeVectorStore(dataset_path=dataset_path, overwrite=True)
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-deeplake/llama_index/vector_stores/deeplake/base.py
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
|
client
property
#
client: Any
Get client.
Returns:
Name | Type | Description |
---|---|---|
Any |
Any
|
DeepLake vectorstore dataset. |
add #
add(nodes: List[BaseNode], **add_kwargs: Any) -> List[str]
Add the embeddings and their nodes into DeepLake.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
nodes |
List[BaseNode]
|
List of nodes with embeddings to insert. |
required |
Returns:
Type | Description |
---|---|
List[str]
|
List[str]: List of ids inserted. |
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-deeplake/llama_index/vector_stores/deeplake/base.py
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
|
delete #
delete(ref_doc_id: str, **delete_kwargs: Any) -> None
Delete nodes using with ref_doc_id.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ref_doc_id |
str
|
The doc_id of the document to delete. |
required |
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-deeplake/llama_index/vector_stores/deeplake/base.py
177 178 179 180 181 182 183 184 185 |
|
query #
query(query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult
Query index for top k most similar nodes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query |
VectorStoreQuery
|
VectorStoreQuery class input, it has the following attributes: 1. query_embedding (List[float]): query embedding 2. similarity_top_k (int): top k most similar nodes |
required |
deep_memory |
bool
|
Whether to use deep memory for query execution. |
required |
Returns:
Type | Description |
---|---|
VectorStoreQueryResult
|
VectorStoreQueryResult |
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-deeplake/llama_index/vector_stores/deeplake/base.py
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
|