Skip to content

Clickhouse

ClickHouseVectorStore #

Bases: BasePydanticVectorStore

ClickHouse Vector Store. In this vector store, embeddings and docs are stored within an existing ClickHouse cluster. During query time, the index uses ClickHouse to query for the top k most similar nodes.

Parameters:

Name Type Description Default
clickhouse_client httpclient

clickhouse-connect httpclient of an existing ClickHouse cluster.

None
table str

The name of the ClickHouse table where data will be stored. Defaults to "llama_index".

'llama_index'
database str

The name of the ClickHouse database where data will be stored. Defaults to "default".

'default'
index_type str

The type of the ClickHouse vector index. Defaults to "NONE", supported are ("NONE", "HNSW", "ANNOY")

'NONE'
metric str

The metric type of the ClickHouse vector index. Defaults to "cosine".

'cosine'
batch_size int

the size of documents to insert. Defaults to 1000.

1000
index_params dict

The index parameters for ClickHouse. Defaults to None.

None
search_params dict

The search parameters for a ClickHouse query. Defaults to None.

None
service_context ServiceContext

Vector store service context. Defaults to None

None

Examples:

pip install llama-index-vector-stores-clickhouse

from llama_index.vector_stores.clickhouse import ClickHouseVectorStore
import clickhouse_connect

# initialize client
client = clickhouse_connect.get_client(
    host="localhost",
    port=8123,
    username="default",
    password="",
)

vector_store = ClickHouseVectorStore(clickhouse_client=client)
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-clickhouse/llama_index/vector_stores/clickhouse/base.py
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
class ClickHouseVectorStore(BasePydanticVectorStore):
    """ClickHouse Vector Store.
    In this vector store, embeddings and docs are stored within an existing
    ClickHouse cluster.
    During query time, the index uses ClickHouse to query for the top
    k most similar nodes.

    Args:
        clickhouse_client (httpclient): clickhouse-connect httpclient of
            an existing ClickHouse cluster.
        table (str, optional): The name of the ClickHouse table
            where data will be stored. Defaults to "llama_index".
        database (str, optional): The name of the ClickHouse database
            where data will be stored. Defaults to "default".
        index_type (str, optional): The type of the ClickHouse vector index.
            Defaults to "NONE", supported are ("NONE", "HNSW", "ANNOY")
        metric (str, optional): The metric type of the ClickHouse vector index.
            Defaults to "cosine".
        batch_size (int, optional): the size of documents to insert. Defaults to 1000.
        index_params (dict, optional): The index parameters for ClickHouse.
            Defaults to None.
        search_params (dict, optional): The search parameters for a ClickHouse query.
            Defaults to None.
        service_context (ServiceContext, optional): Vector store service context.
            Defaults to None

    Examples:
        `pip install llama-index-vector-stores-clickhouse`

        ```python
        from llama_index.vector_stores.clickhouse import ClickHouseVectorStore
        import clickhouse_connect

        # initialize client
        client = clickhouse_connect.get_client(
            host="localhost",
            port=8123,
            username="default",
            password="",
        )

        vector_store = ClickHouseVectorStore(clickhouse_client=client)
        ```
    """

    stores_text = True
    flat_metadata = False
    _table_existed: bool = PrivateAttr(default=False)
    _client: Any = PrivateAttr()
    _config: Any = PrivateAttr()
    _dim: Any = PrivateAttr()
    _column_config: Any = PrivateAttr()
    _column_names: List[str] = PrivateAttr()
    _column_type_names: List[str] = PrivateAttr()
    metadata_column: str = "metadata"
    AMPLIFY_RATIO_LE5 = 100
    AMPLIFY_RATIO_GT5 = 20
    AMPLIFY_RATIO_GT50 = 10

    def __init__(
        self,
        clickhouse_client: Optional[Any] = None,
        table: str = "llama_index",
        database: str = "default",
        engine: str = "MergeTree",
        index_type: str = "NONE",
        metric: str = "cosine",
        batch_size: int = 1000,
        index_params: Optional[dict] = None,
        search_params: Optional[dict] = None,
        service_context: Optional[ServiceContext] = None,
        **kwargs: Any,
    ) -> None:
        """Initialize params."""
        import_err_msg = """
            `clickhouse_connect` package not found,
            please run `pip install clickhouse-connect`
        """
        clickhouse_connect_spec = importlib.util.find_spec(
            "clickhouse_connect.driver.httpclient"
        )
        if clickhouse_connect_spec is None:
            raise ImportError(import_err_msg)

        if clickhouse_client is None:
            raise ValueError("Missing ClickHouse client!")
        self._client = clickhouse_client
        self._config = ClickHouseSettings(
            table=table,
            database=database,
            engine=engine,
            index_type=index_type,
            metric=metric,
            batch_size=batch_size,
            index_params=index_params,
            search_params=search_params,
            **kwargs,
        )

        # schema column name, type, and construct format method
        self._column_config: Dict = {
            "id": {"type": "String", "extract_func": lambda x: x.node_id},
            "doc_id": {"type": "String", "extract_func": lambda x: x.ref_doc_id},
            "text": {
                "type": "String",
                "extract_func": lambda x: escape_str(
                    x.get_content(metadata_mode=MetadataMode.NONE) or ""
                ),
            },
            "vector": {
                "type": "Array(Float32)",
                "extract_func": lambda x: x.get_embedding(),
            },
            "node_info": {
                "type": "Tuple(start Nullable(UInt64), end Nullable(UInt64))",
                "extract_func": lambda x: x.get_node_info(),
            },
            "metadata": {
                "type": "String",
                "extract_func": lambda x: json.dumps(x.metadata),
            },
        }
        self._column_names = list(self._column_config.keys())
        self._column_type_names = [
            self._column_config[column_name]["type"]
            for column_name in self._column_names
        ]

        if service_context is not None:
            service_context = cast(ServiceContext, service_context)
            dimension = len(
                service_context.embed_model.get_query_embedding("try this out")
            )
            self.create_table(dimension)
        super().__init__(
            clickhouse_client=clickhouse_client,
            table=table,
            database=database,
            engine=engine,
            index_type=index_type,
            metric=metric,
            batch_size=batch_size,
            index_params=index_params,
            search_params=search_params,
            service_context=service_context,
        )

    @property
    def client(self) -> Any:
        """Get client."""
        return self._client

    def create_table(self, dimension: int) -> None:
        index = ""
        settings = {"allow_experimental_object_type": "1"}
        if self._config.index_type.lower() == "hnsw":
            scalarKind = "f32"
            if self._config.index_params and "ScalarKind" in self._config.index_params:
                scalarKind = self._config.index_params["ScalarKind"]
            index = f"INDEX hnsw_indx vector TYPE usearch('{DISTANCE_MAPPING[self._config.metric]}', '{scalarKind}')"
            settings["allow_experimental_usearch_index"] = "1"
        elif self._config.index_type.lower() == "annoy":
            numTrees = 100
            if self._config.index_params and "NumTrees" in self._config.index_params:
                numTrees = self._config.index_params["NumTrees"]
            index = f"INDEX annoy_indx vector TYPE annoy('{DISTANCE_MAPPING[self._config.metric]}', {numTrees})"
            settings["allow_experimental_annoy_index"] = "1"
        schema_ = f"""
            CREATE TABLE IF NOT EXISTS {self._config.database}.{self._config.table}(
                {",".join([f'{k} {v["type"]}' for k, v in self._column_config.items()])},
                CONSTRAINT vector_length CHECK length(vector) = {dimension},
                {index}
            ) ENGINE = MergeTree ORDER BY id
            """
        self._dim = dimension
        self._client.command(schema_, settings=settings)
        self._table_existed = True

    def _upload_batch(
        self,
        batch: List[BaseNode],
    ) -> None:
        _data = []
        # we assume all rows have all columns
        for idx, item in enumerate(batch):
            _row = []
            for column_name in self._column_names:
                _row.append(self._column_config[column_name]["extract_func"](item))
            _data.append(_row)

        self._client.insert(
            f"{self._config.database}.{self._config.table}",
            data=_data,
            column_names=self._column_names,
            column_type_names=self._column_type_names,
        )

    def _build_text_search_statement(
        self, query_str: str, similarity_top_k: int
    ) -> str:
        # TODO: We could make this overridable
        tokens = _default_tokenizer(query_str)
        terms_pattern = [f"\\b(?i){x}\\b" for x in tokens]
        column_keys = self._column_config.keys()
        return (
            f"SELECT {','.join(filter(lambda k: k != 'vector', column_keys))}, "
            f"score FROM {self._config.database}.{self._config.table} WHERE score > 0 "
            f"ORDER BY length(multiMatchAllIndices(text, {terms_pattern})) "
            f"AS score DESC, "
            f"log(1 + countMatches(text, '\\b(?i)({'|'.join(tokens)})\\b')) "
            f"AS d2 DESC limit {similarity_top_k}"
        )

    def _build_hybrid_search_statement(
        self, stage_one_sql: str, query_str: str, similarity_top_k: int
    ) -> str:
        # TODO: We could make this overridable
        tokens = _default_tokenizer(query_str)
        terms_pattern = [f"\\b(?i){x}\\b" for x in tokens]
        column_keys = self._column_config.keys()
        return (
            f"SELECT {','.join(filter(lambda k: k != 'vector', column_keys))}, "
            f"score FROM ({stage_one_sql}) tempt "
            f"ORDER BY length(multiMatchAllIndices(text, {terms_pattern})) "
            f"AS d1 DESC, "
            f"log(1 + countMatches(text, '\\\\b(?i)({'|'.join(tokens)})\\\\b')) "
            f"AS d2 DESC limit {similarity_top_k}"
        )

    def _append_meta_filter_condition(
        self, where_str: Optional[str], exact_match_filter: list
    ) -> str:
        filter_str = " AND ".join(
            f"JSONExtractString("
            f"{self.metadata_column}, '{filter_item.key}') "
            f"= '{filter_item.value}'"
            for filter_item in exact_match_filter
        )
        if where_str is None:
            where_str = filter_str
        else:
            where_str = f"{where_str} AND " + filter_str
        return where_str

    def add(
        self,
        nodes: List[BaseNode],
        **add_kwargs: Any,
    ) -> List[str]:
        """Add nodes to index.

        Args:
            nodes: List[BaseNode]: list of nodes with embeddings
        """
        if not nodes:
            return []

        if not self._table_existed:
            self.create_table(len(nodes[0].get_embedding()))

        for batch in iter_batch(nodes, self._config.batch_size):
            self._upload_batch(batch=batch)

        return [result.node_id for result in nodes]

    def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
        """
        Delete nodes using with ref_doc_id.

        Args:
            ref_doc_id (str): The doc_id of the document to delete.
        """
        self._client.command(
            f"DELETE FROM {self._config.database}.{self._config.table} WHERE doc_id='{ref_doc_id}'"
        )

    def drop(self) -> None:
        """Drop ClickHouse table."""
        self._client.command(
            f"DROP TABLE IF EXISTS {self._config.database}.{self._config.table}"
        )

    def query(
        self, query: VectorStoreQuery, where: Optional[str] = None, **kwargs: Any
    ) -> VectorStoreQueryResult:
        """Query index for top k most similar nodes.

        Args:
            query (VectorStoreQuery): query
            where (str): additional where filter
        """
        query_embedding = cast(List[float], query.query_embedding)
        where_str = where
        if query.doc_ids:
            if where_str is not None:
                where_str = f"{where_str} AND {f'doc_id IN {format_list_to_string(query.doc_ids)}'}"
            else:
                where_str = f"doc_id IN {format_list_to_string(query.doc_ids)}"

        # TODO: Support other filter types
        if query.filters is not None and len(query.filters.legacy_filters()) > 0:
            where_str = self._append_meta_filter_condition(
                where_str, query.filters.legacy_filters()
            )

        # build query sql
        if query.mode == VectorStoreQueryMode.DEFAULT:
            query_statement = self._config.build_query_statement(
                query_embed=query_embedding,
                where_str=where_str,
                limit=query.similarity_top_k,
            )
        elif query.mode == VectorStoreQueryMode.HYBRID:
            if query.query_str is not None:
                amplify_ratio = self.AMPLIFY_RATIO_LE5
                if 5 < query.similarity_top_k < 50:
                    amplify_ratio = self.AMPLIFY_RATIO_GT5
                if query.similarity_top_k > 50:
                    amplify_ratio = self.AMPLIFY_RATIO_GT50
                query_statement = self._build_hybrid_search_statement(
                    self._config.build_query_statement(
                        query_embed=query_embedding,
                        where_str=where_str,
                        limit=query.similarity_top_k * amplify_ratio,
                    ),
                    query.query_str,
                    query.similarity_top_k,
                )
                logger.debug(f"hybrid query_statement={query_statement}")
            else:
                raise ValueError("query_str must be specified for a hybrid query.")
        elif query.mode == VectorStoreQueryMode.TEXT_SEARCH:
            if query.query_str is not None:
                query_statement = self._build_text_search_statement(
                    query.query_str,
                    query.similarity_top_k,
                )
                logger.debug(f"text query_statement={query_statement}")
            else:
                raise ValueError("query_str must be specified for a text query.")
        else:
            raise ValueError(f"query mode {query.mode!s} not supported")
        nodes = []
        ids = []
        similarities = []
        response = self._client.query(query_statement)
        column_names = response.column_names
        id_idx = column_names.index("id")
        text_idx = column_names.index("text")
        metadata_idx = column_names.index("metadata")
        node_info_idx = column_names.index("node_info")
        score_idx = column_names.index("score")
        for r in response.result_rows:
            start_char_idx = None
            end_char_idx = None

            if isinstance(r[node_info_idx], dict):
                start_char_idx = r[node_info_idx].get("start", None)
                end_char_idx = r[node_info_idx].get("end", None)
            node = TextNode(
                id_=r[id_idx],
                text=r[text_idx],
                metadata=json.loads(r[metadata_idx]),
                start_char_idx=start_char_idx,
                end_char_idx=end_char_idx,
                relationships={
                    NodeRelationship.SOURCE: RelatedNodeInfo(node_id=r[id_idx])
                },
            )

            nodes.append(node)
            similarities.append(r[score_idx])
            ids.append(r[id_idx])
        return VectorStoreQueryResult(nodes=nodes, similarities=similarities, ids=ids)

client property #

client: Any

Get client.

add #

add(nodes: List[BaseNode], **add_kwargs: Any) -> List[str]

Add nodes to index.

Parameters:

Name Type Description Default
nodes List[BaseNode]

List[BaseNode]: list of nodes with embeddings

required
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-clickhouse/llama_index/vector_stores/clickhouse/base.py
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
def add(
    self,
    nodes: List[BaseNode],
    **add_kwargs: Any,
) -> List[str]:
    """Add nodes to index.

    Args:
        nodes: List[BaseNode]: list of nodes with embeddings
    """
    if not nodes:
        return []

    if not self._table_existed:
        self.create_table(len(nodes[0].get_embedding()))

    for batch in iter_batch(nodes, self._config.batch_size):
        self._upload_batch(batch=batch)

    return [result.node_id for result in nodes]

delete #

delete(ref_doc_id: str, **delete_kwargs: Any) -> None

Delete nodes using with ref_doc_id.

Parameters:

Name Type Description Default
ref_doc_id str

The doc_id of the document to delete.

required
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-clickhouse/llama_index/vector_stores/clickhouse/base.py
381
382
383
384
385
386
387
388
389
390
def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
    """
    Delete nodes using with ref_doc_id.

    Args:
        ref_doc_id (str): The doc_id of the document to delete.
    """
    self._client.command(
        f"DELETE FROM {self._config.database}.{self._config.table} WHERE doc_id='{ref_doc_id}'"
    )

drop #

drop() -> None

Drop ClickHouse table.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-clickhouse/llama_index/vector_stores/clickhouse/base.py
392
393
394
395
396
def drop(self) -> None:
    """Drop ClickHouse table."""
    self._client.command(
        f"DROP TABLE IF EXISTS {self._config.database}.{self._config.table}"
    )

query #

query(query: VectorStoreQuery, where: Optional[str] = None, **kwargs: Any) -> VectorStoreQueryResult

Query index for top k most similar nodes.

Parameters:

Name Type Description Default
query VectorStoreQuery

query

required
where str

additional where filter

None
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-clickhouse/llama_index/vector_stores/clickhouse/base.py
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
def query(
    self, query: VectorStoreQuery, where: Optional[str] = None, **kwargs: Any
) -> VectorStoreQueryResult:
    """Query index for top k most similar nodes.

    Args:
        query (VectorStoreQuery): query
        where (str): additional where filter
    """
    query_embedding = cast(List[float], query.query_embedding)
    where_str = where
    if query.doc_ids:
        if where_str is not None:
            where_str = f"{where_str} AND {f'doc_id IN {format_list_to_string(query.doc_ids)}'}"
        else:
            where_str = f"doc_id IN {format_list_to_string(query.doc_ids)}"

    # TODO: Support other filter types
    if query.filters is not None and len(query.filters.legacy_filters()) > 0:
        where_str = self._append_meta_filter_condition(
            where_str, query.filters.legacy_filters()
        )

    # build query sql
    if query.mode == VectorStoreQueryMode.DEFAULT:
        query_statement = self._config.build_query_statement(
            query_embed=query_embedding,
            where_str=where_str,
            limit=query.similarity_top_k,
        )
    elif query.mode == VectorStoreQueryMode.HYBRID:
        if query.query_str is not None:
            amplify_ratio = self.AMPLIFY_RATIO_LE5
            if 5 < query.similarity_top_k < 50:
                amplify_ratio = self.AMPLIFY_RATIO_GT5
            if query.similarity_top_k > 50:
                amplify_ratio = self.AMPLIFY_RATIO_GT50
            query_statement = self._build_hybrid_search_statement(
                self._config.build_query_statement(
                    query_embed=query_embedding,
                    where_str=where_str,
                    limit=query.similarity_top_k * amplify_ratio,
                ),
                query.query_str,
                query.similarity_top_k,
            )
            logger.debug(f"hybrid query_statement={query_statement}")
        else:
            raise ValueError("query_str must be specified for a hybrid query.")
    elif query.mode == VectorStoreQueryMode.TEXT_SEARCH:
        if query.query_str is not None:
            query_statement = self._build_text_search_statement(
                query.query_str,
                query.similarity_top_k,
            )
            logger.debug(f"text query_statement={query_statement}")
        else:
            raise ValueError("query_str must be specified for a text query.")
    else:
        raise ValueError(f"query mode {query.mode!s} not supported")
    nodes = []
    ids = []
    similarities = []
    response = self._client.query(query_statement)
    column_names = response.column_names
    id_idx = column_names.index("id")
    text_idx = column_names.index("text")
    metadata_idx = column_names.index("metadata")
    node_info_idx = column_names.index("node_info")
    score_idx = column_names.index("score")
    for r in response.result_rows:
        start_char_idx = None
        end_char_idx = None

        if isinstance(r[node_info_idx], dict):
            start_char_idx = r[node_info_idx].get("start", None)
            end_char_idx = r[node_info_idx].get("end", None)
        node = TextNode(
            id_=r[id_idx],
            text=r[text_idx],
            metadata=json.loads(r[metadata_idx]),
            start_char_idx=start_char_idx,
            end_char_idx=end_char_idx,
            relationships={
                NodeRelationship.SOURCE: RelatedNodeInfo(node_id=r[id_idx])
            },
        )

        nodes.append(node)
        similarities.append(r[score_idx])
        ids.append(r[id_idx])
    return VectorStoreQueryResult(nodes=nodes, similarities=similarities, ids=ids)