Skip to content

Chatgpt plugin

ChatGPTRetrievalPluginClient #

Bases: VectorStore

ChatGPT Retrieval Plugin Client.

In this client, we make use of the endpoints defined by ChatGPT.

Parameters:

Name Type Description Default
endpoint_url str

URL of the ChatGPT Retrieval Plugin.

required
bearer_token Optional[str]

Bearer token for the ChatGPT Retrieval Plugin.

None
retries Optional[Retry]

Retry object for the ChatGPT Retrieval Plugin.

None
batch_size int

Batch size for the ChatGPT Retrieval Plugin.

100
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-chatgpt-plugin/llama_index/vector_stores/chatgpt_plugin/base.py
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
class ChatGPTRetrievalPluginClient(VectorStore):
    """ChatGPT Retrieval Plugin Client.

    In this client, we make use of the endpoints defined by ChatGPT.

    Args:
        endpoint_url (str): URL of the ChatGPT Retrieval Plugin.
        bearer_token (Optional[str]): Bearer token for the ChatGPT Retrieval Plugin.
        retries (Optional[Retry]): Retry object for the ChatGPT Retrieval Plugin.
        batch_size (int): Batch size for the ChatGPT Retrieval Plugin.
    """

    stores_text: bool = True
    is_embedding_query: bool = False

    def __init__(
        self,
        endpoint_url: str,
        bearer_token: Optional[str] = None,
        retries: Optional[Retry] = None,
        batch_size: int = 100,
        **kwargs: Any,
    ) -> None:
        """Initialize params."""
        self._endpoint_url = endpoint_url
        self._bearer_token = bearer_token or os.getenv("BEARER_TOKEN")
        self._retries = retries
        self._batch_size = batch_size

        self._s = requests.Session()
        self._s.mount("http://", HTTPAdapter(max_retries=self._retries))

    @property
    def client(self) -> None:
        """Get client."""
        return

    def add(
        self,
        nodes: List[BaseNode],
        **add_kwargs: Any,
    ) -> List[str]:
        """Add nodes to index."""
        headers = {"Authorization": f"Bearer {self._bearer_token}"}

        docs_to_upload = convert_docs_to_json(nodes)
        iterable_docs = get_tqdm_iterable(
            range(0, len(docs_to_upload), self._batch_size),
            show_progress=True,
            desc="Uploading documents",
        )
        for i in iterable_docs:
            i_end = min(i + self._batch_size, len(docs_to_upload))
            self._s.post(
                f"{self._endpoint_url}/upsert",
                headers=headers,
                json={"documents": docs_to_upload[i:i_end]},
            )

        return [result.node_id for result in nodes]

    def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
        """
        Delete nodes using with ref_doc_id.

        Args:
            ref_doc_id (str): The doc_id of the document to delete.

        """
        headers = {"Authorization": f"Bearer {self._bearer_token}"}
        self._s.post(
            f"{self._endpoint_url}/delete",
            headers=headers,
            json={"ids": [ref_doc_id]},
        )

    def query(
        self,
        query: VectorStoreQuery,
        **kwargs: Any,
    ) -> VectorStoreQueryResult:
        """Get nodes for response."""
        if query.filters is not None:
            raise ValueError("Metadata filters not implemented for ChatGPT Plugin yet.")

        if query.query_str is None:
            raise ValueError("query_str must be provided")
        headers = {"Authorization": f"Bearer {self._bearer_token}"}
        # TODO: add metadata filter
        queries = [{"query": query.query_str, "top_k": query.similarity_top_k}]
        res = requests.post(
            f"{self._endpoint_url}/query", headers=headers, json={"queries": queries}
        )

        nodes = []
        similarities = []
        ids = []
        for query_result in res.json()["results"]:
            for result in query_result["results"]:
                result_id = result["id"]
                result_txt = result["text"]
                result_score = result["score"]
                result_ref_doc_id = result["source_id"]
                node = TextNode(
                    id_=result_id,
                    text=result_txt,
                    relationships={
                        NodeRelationship.SOURCE: RelatedNodeInfo(
                            node_id=result_ref_doc_id
                        )
                    },
                )
                nodes.append(node)
                similarities.append(result_score)
                ids.append(result_id)

            # NOTE: there should only be one query
            break

        return VectorStoreQueryResult(nodes=nodes, similarities=similarities, ids=ids)

client property #

client: None

Get client.

add #

add(nodes: List[BaseNode], **add_kwargs: Any) -> List[str]

Add nodes to index.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-chatgpt-plugin/llama_index/vector_stores/chatgpt_plugin/base.py
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
def add(
    self,
    nodes: List[BaseNode],
    **add_kwargs: Any,
) -> List[str]:
    """Add nodes to index."""
    headers = {"Authorization": f"Bearer {self._bearer_token}"}

    docs_to_upload = convert_docs_to_json(nodes)
    iterable_docs = get_tqdm_iterable(
        range(0, len(docs_to_upload), self._batch_size),
        show_progress=True,
        desc="Uploading documents",
    )
    for i in iterable_docs:
        i_end = min(i + self._batch_size, len(docs_to_upload))
        self._s.post(
            f"{self._endpoint_url}/upsert",
            headers=headers,
            json={"documents": docs_to_upload[i:i_end]},
        )

    return [result.node_id for result in nodes]

delete #

delete(ref_doc_id: str, **delete_kwargs: Any) -> None

Delete nodes using with ref_doc_id.

Parameters:

Name Type Description Default
ref_doc_id str

The doc_id of the document to delete.

required
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-chatgpt-plugin/llama_index/vector_stores/chatgpt_plugin/base.py
117
118
119
120
121
122
123
124
125
126
127
128
129
130
def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
    """
    Delete nodes using with ref_doc_id.

    Args:
        ref_doc_id (str): The doc_id of the document to delete.

    """
    headers = {"Authorization": f"Bearer {self._bearer_token}"}
    self._s.post(
        f"{self._endpoint_url}/delete",
        headers=headers,
        json={"ids": [ref_doc_id]},
    )

query #

query(query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult

Get nodes for response.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-chatgpt-plugin/llama_index/vector_stores/chatgpt_plugin/base.py
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
def query(
    self,
    query: VectorStoreQuery,
    **kwargs: Any,
) -> VectorStoreQueryResult:
    """Get nodes for response."""
    if query.filters is not None:
        raise ValueError("Metadata filters not implemented for ChatGPT Plugin yet.")

    if query.query_str is None:
        raise ValueError("query_str must be provided")
    headers = {"Authorization": f"Bearer {self._bearer_token}"}
    # TODO: add metadata filter
    queries = [{"query": query.query_str, "top_k": query.similarity_top_k}]
    res = requests.post(
        f"{self._endpoint_url}/query", headers=headers, json={"queries": queries}
    )

    nodes = []
    similarities = []
    ids = []
    for query_result in res.json()["results"]:
        for result in query_result["results"]:
            result_id = result["id"]
            result_txt = result["text"]
            result_score = result["score"]
            result_ref_doc_id = result["source_id"]
            node = TextNode(
                id_=result_id,
                text=result_txt,
                relationships={
                    NodeRelationship.SOURCE: RelatedNodeInfo(
                        node_id=result_ref_doc_id
                    )
                },
            )
            nodes.append(node)
            similarities.append(result_score)
            ids.append(result_id)

        # NOTE: there should only be one query
        break

    return VectorStoreQueryResult(nodes=nodes, similarities=similarities, ids=ids)