53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634 | class AzureAISearchVectorStore(BasePydanticVectorStore):
"""Azure AI Search vector store.
Examples:
`pip install llama-index-vector-stores-azureaisearch`
```python
from azure.core.credentials import AzureKeyCredential
from azure.search.documents import SearchClient
from azure.search.documents.indexes import SearchIndexClient
from llama_index.vector_stores.azureaisearch import AzureAISearchVectorStore
from llama_index.vector_stores.azureaisearch import IndexManagement, MetadataIndexFieldType
# Azure AI Search setup
search_service_api_key = "YOUR-AZURE-SEARCH-SERVICE-ADMIN-KEY"
search_service_endpoint = "YOUR-AZURE-SEARCH-SERVICE-ENDPOINT"
search_service_api_version = "2023-11-01"
credential = AzureKeyCredential(search_service_api_key)
# Index name to use
index_name = "llamaindex-vector-demo"
# Use index client to demonstrate creating an index
index_client = SearchIndexClient(
endpoint=search_service_endpoint,
credential=credential,
)
metadata_fields = {
"author": "author",
"theme": ("topic", MetadataIndexFieldType.STRING),
"director": "director",
}
# Creating an Azure AI Search Vector Store
vector_store = AzureAISearchVectorStore(
search_or_index_client=index_client,
filterable_metadata_field_keys=metadata_fields,
index_name=index_name,
index_management=IndexManagement.CREATE_IF_NOT_EXISTS,
id_field_key="id",
chunk_field_key="chunk",
embedding_field_key="embedding",
embedding_dimensionality=1536,
metadata_string_field_key="metadata",
doc_id_field_key="doc_id",
language_analyzer="en.lucene",
vector_algorithm_type="exhaustiveKnn",
)
```
"""
stores_text: bool = True
flat_metadata: bool = True
_index_client: SearchIndexClient = PrivateAttr()
_search_client: SearchClient = PrivateAttr()
_embedding_dimensionality: int = PrivateAttr()
_language_analyzer: str = PrivateAttr()
_field_mapping: Dict[str, str] = PrivateAttr()
_index_management: IndexManagement = PrivateAttr()
_index_mapping: Callable[
[Dict[str, str], Dict[str, Any]], Dict[str, str]
] = PrivateAttr()
_metadata_to_index_field_map: Dict[
str, Tuple[str, MetadataIndexFieldType]
] = PrivateAttr()
_vector_profile_name: str = PrivateAttr()
def _normalise_metadata_to_index_fields(
self,
filterable_metadata_field_keys: Union[
List[str],
Dict[str, str],
Dict[str, Tuple[str, MetadataIndexFieldType]],
None,
] = [],
) -> Dict[str, Tuple[str, MetadataIndexFieldType]]:
index_field_spec: Dict[str, Tuple[str, MetadataIndexFieldType]] = {}
if isinstance(filterable_metadata_field_keys, List):
for field in filterable_metadata_field_keys:
# Index field name and the metadata field name are the same
# Use String as the default index field type
index_field_spec[field] = (field, MetadataIndexFieldType.STRING)
elif isinstance(filterable_metadata_field_keys, Dict):
for k, v in filterable_metadata_field_keys.items():
if isinstance(v, tuple):
# Index field name and metadata field name may differ
# The index field type used is as supplied
index_field_spec[k] = v
else:
# Index field name and metadata field name may differ
# Use String as the default index field type
index_field_spec[k] = (v, MetadataIndexFieldType.STRING)
return index_field_spec
def _create_index_if_not_exists(self, index_name: str) -> None:
if index_name not in self._index_client.list_index_names():
logger.info(
f"Index {index_name} does not exist in Azure AI Search, creating index"
)
self._create_index(index_name)
def _create_metadata_index_fields(self) -> List[Any]:
"""Create a list of index fields for storing metadata values."""
from azure.search.documents.indexes.models import SimpleField
index_fields = []
# create search fields
for v in self._metadata_to_index_field_map.values():
field_name, field_type = v
if field_type == MetadataIndexFieldType.STRING:
index_field_type = "Edm.String"
elif field_type == MetadataIndexFieldType.INT32:
index_field_type = "Edm.Int32"
elif field_type == MetadataIndexFieldType.INT64:
index_field_type = "Edm.Int64"
elif field_type == MetadataIndexFieldType.DOUBLE:
index_field_type = "Edm.Double"
elif field_type == MetadataIndexFieldType.BOOLEAN:
index_field_type = "Edm.Boolean"
field = SimpleField(name=field_name, type=index_field_type, filterable=True)
index_fields.append(field)
return index_fields
def _create_index(self, index_name: Optional[str]) -> None:
"""
Creates a default index based on the supplied index name, key field names and
metadata filtering keys.
"""
from azure.search.documents.indexes.models import (
ExhaustiveKnnAlgorithmConfiguration,
ExhaustiveKnnParameters,
HnswAlgorithmConfiguration,
HnswParameters,
SearchableField,
SearchField,
SearchFieldDataType,
SearchIndex,
SemanticConfiguration,
SemanticField,
SemanticPrioritizedFields,
SemanticSearch,
SimpleField,
VectorSearch,
VectorSearchAlgorithmKind,
VectorSearchAlgorithmMetric,
VectorSearchProfile,
)
logger.info(f"Configuring {index_name} fields for Azure AI Search")
fields = [
SimpleField(name=self._field_mapping["id"], type="Edm.String", key=True),
SearchableField(
name=self._field_mapping["chunk"],
type="Edm.String",
analyzer_name=self._language_analyzer,
),
SearchField(
name=self._field_mapping["embedding"],
type=SearchFieldDataType.Collection(SearchFieldDataType.Single),
searchable=True,
vector_search_dimensions=self._embedding_dimensionality,
vector_search_profile_name=self._vector_profile_name,
),
SimpleField(name=self._field_mapping["metadata"], type="Edm.String"),
SimpleField(
name=self._field_mapping["doc_id"], type="Edm.String", filterable=True
),
]
logger.info(f"Configuring {index_name} metadata fields")
metadata_index_fields = self._create_metadata_index_fields()
fields.extend(metadata_index_fields)
logger.info(f"Configuring {index_name} vector search")
# Configure the vector search algorithms and profiles
vector_search = VectorSearch(
algorithms=[
HnswAlgorithmConfiguration(
name="myHnsw",
kind=VectorSearchAlgorithmKind.HNSW,
# For more information on HNSw parameters, visit https://learn.microsoft.com//azure/search/vector-search-ranking#creating-the-hnsw-graph
parameters=HnswParameters(
m=4,
ef_construction=400,
ef_search=500,
metric=VectorSearchAlgorithmMetric.COSINE,
),
),
ExhaustiveKnnAlgorithmConfiguration(
name="myExhaustiveKnn",
kind=VectorSearchAlgorithmKind.EXHAUSTIVE_KNN,
parameters=ExhaustiveKnnParameters(
metric=VectorSearchAlgorithmMetric.COSINE,
),
),
],
profiles=[
VectorSearchProfile(
name="myHnswProfile",
algorithm_configuration_name="myHnsw",
),
# Add more profiles if needed
VectorSearchProfile(
name="myExhaustiveKnnProfile",
algorithm_configuration_name="myExhaustiveKnn",
),
# Add more profiles if needed
],
)
logger.info(f"Configuring {index_name} semantic search")
semantic_config = SemanticConfiguration(
name="mySemanticConfig",
prioritized_fields=SemanticPrioritizedFields(
content_fields=[SemanticField(field_name=self._field_mapping["chunk"])],
),
)
semantic_search = SemanticSearch(configurations=[semantic_config])
index = SearchIndex(
name=index_name,
fields=fields,
vector_search=vector_search,
semantic_search=semantic_search,
)
logger.debug(f"Creating {index_name} search index")
self._index_client.create_index(index)
def _validate_index(self, index_name: Optional[str]) -> None:
if self._index_client and index_name:
if index_name not in self._index_client.list_index_names():
raise ValueError(
f"Validation failed, index {index_name} does not exist."
)
def __init__(
self,
search_or_index_client: Any,
id_field_key: str,
chunk_field_key: str,
embedding_field_key: str,
metadata_string_field_key: str,
doc_id_field_key: str,
filterable_metadata_field_keys: Optional[
Union[
List[str],
Dict[str, str],
Dict[str, Tuple[str, MetadataIndexFieldType]],
]
] = None,
index_name: Optional[str] = None,
index_mapping: Optional[
Callable[[Dict[str, str], Dict[str, Any]], Dict[str, str]]
] = None,
index_management: IndexManagement = IndexManagement.NO_VALIDATION,
embedding_dimensionality: int = 1536,
vector_algorithm_type: str = "exhaustiveKnn",
# If we have content in other languages, it is better to enable the language analyzer to be adjusted in searchable fields.
# https://learn.microsoft.com/en-us/azure/search/index-add-language-analyzers
language_analyzer: str = "en.lucene",
**kwargs: Any,
) -> None:
# ruff: noqa: E501
"""
Embeddings and documents are stored in an Azure AI Search index,
a merge or upload approach is used when adding embeddings.
When adding multiple embeddings the index is updated by this vector store
in batches of 10 documents, very large nodes may result in failure due to
the batch byte size being exceeded.
Args:
search_client (azure.search.documents.SearchClient):
Client for index to populated / queried.
id_field_key (str): Index field storing the id
chunk_field_key (str): Index field storing the node text
embedding_field_key (str): Index field storing the embedding vector
metadata_string_field_key (str):
Index field storing node metadata as a json string.
Schema is arbitrary, to filter on metadata values they must be stored
as separate fields in the index, use filterable_metadata_field_keys
to specify the metadata values that should be stored in these filterable fields
doc_id_field_key (str): Index field storing doc_id
index_mapping:
Optional function with definition
(enriched_doc: Dict[str, str], metadata: Dict[str, Any]): Dict[str,str]
used to map document fields to the AI search index fields
(return value of function).
If none is specified a default mapping is provided which uses
the field keys. The keys in the enriched_doc are
["id", "chunk", "embedding", "metadata"]
The default mapping is:
- "id" to id_field_key
- "chunk" to chunk_field_key
- "embedding" to embedding_field_key
- "metadata" to metadata_field_key
*kwargs (Any): Additional keyword arguments.
Raises:
ImportError: Unable to import `azure-search-documents`
ValueError: If `search_or_index_client` is not provided
ValueError: If `index_name` is not provided and `search_or_index_client`
is of type azure.search.documents.SearchIndexClient
ValueError: If `index_name` is provided and `search_or_index_client`
is of type azure.search.documents.SearchClient
ValueError: If `create_index_if_not_exists` is true and
`search_or_index_client` is of type azure.search.documents.SearchClient
"""
import_err_msg = (
"`azure-search-documents` package not found, please run "
"`pip install azure-search-documents==11.4.0`"
)
try:
import azure.search.documents # noqa
from azure.search.documents import SearchClient
from azure.search.documents.indexes import SearchIndexClient
except ImportError:
raise ImportError(import_err_msg)
self._index_client: SearchIndexClient = cast(SearchIndexClient, None)
self._search_client: SearchClient = cast(SearchClient, None)
self._embedding_dimensionality = embedding_dimensionality
if vector_algorithm_type == "exhaustiveKnn":
self._vector_profile_name = "myExhaustiveKnnProfile"
elif vector_algorithm_type == "hnsw":
self._vector_profile_name = "myHnswProfile"
else:
raise ValueError(
"Only 'exhaustiveKnn' and 'hnsw' are supported for vector_algorithm_type"
)
self._language_analyzer = language_analyzer
# Validate search_or_index_client
if search_or_index_client is not None:
if isinstance(search_or_index_client, SearchIndexClient):
# If SearchIndexClient is supplied so must index_name
self._index_client = cast(SearchIndexClient, search_or_index_client)
if not index_name:
raise ValueError(
"index_name must be supplied if search_or_index_client is of "
"type azure.search.documents.SearchIndexClient"
)
self._search_client = self._index_client.get_search_client(
index_name=index_name
)
elif isinstance(search_or_index_client, SearchClient):
self._search_client = cast(SearchClient, search_or_index_client)
# Validate index_name
if index_name:
raise ValueError(
"index_name cannot be supplied if search_or_index_client "
"is of type azure.search.documents.SearchClient"
)
if not self._index_client and not self._search_client:
raise ValueError(
"search_or_index_client must be of type "
"azure.search.documents.SearchClient or "
"azure.search.documents.SearchIndexClient"
)
else:
raise ValueError("search_or_index_client not specified")
if (
index_management == IndexManagement.CREATE_IF_NOT_EXISTS
and not self._index_client
):
raise ValueError(
"index_management has value of IndexManagement.CREATE_IF_NOT_EXISTS "
"but search_or_index_client is not of type "
"azure.search.documents.SearchIndexClient"
)
self._index_management = index_management
# Default field mapping
field_mapping = {
"id": id_field_key,
"chunk": chunk_field_key,
"embedding": embedding_field_key,
"metadata": metadata_string_field_key,
"doc_id": doc_id_field_key,
}
self._field_mapping = field_mapping
self._index_mapping = (
self._default_index_mapping if index_mapping is None else index_mapping
)
# self._filterable_metadata_field_keys = filterable_metadata_field_keys
self._metadata_to_index_field_map = self._normalise_metadata_to_index_fields(
filterable_metadata_field_keys
)
if self._index_management == IndexManagement.CREATE_IF_NOT_EXISTS:
if index_name:
self._create_index_if_not_exists(index_name)
if self._index_management == IndexManagement.VALIDATE_INDEX:
self._validate_index(index_name)
super().__init__()
@property
def client(self) -> Any:
"""Get client."""
return self._search_client
def _default_index_mapping(
self, enriched_doc: Dict[str, str], metadata: Dict[str, Any]
) -> Dict[str, str]:
index_doc: Dict[str, str] = {}
for field in self._field_mapping:
index_doc[self._field_mapping[field]] = enriched_doc[field]
for metadata_field_name, (
index_field_name,
_,
) in self._metadata_to_index_field_map.items():
metadata_value = metadata.get(metadata_field_name)
if metadata_value:
index_doc[index_field_name] = metadata_value
return index_doc
def add(
self,
nodes: List[BaseNode],
**add_kwargs: Any,
) -> List[str]:
"""Add nodes to index associated with the configured search client.
Args:
nodes: List[BaseNode]: nodes with embeddings
"""
if not self._search_client:
raise ValueError("Search client not initialized")
documents = []
ids = []
for node in nodes:
logger.debug(f"Processing embedding: {node.node_id}")
ids.append(node.node_id)
index_document = self._create_index_document(node)
documents.append(index_document)
if len(documents) >= 10:
logger.info(
f"Uploading batch of size {len(documents)}, "
f"current progress {len(ids)} of {len(nodes)}"
)
self._search_client.merge_or_upload_documents(documents)
documents = []
# Upload remaining batch of less than 10 documents
if len(documents) > 0:
logger.info(
f"Uploading remaining batch of size {len(documents)}, "
f"current progress {len(ids)} of {len(nodes)}"
)
self._search_client.merge_or_upload_documents(documents)
documents = []
return ids
def _create_index_document(self, node: BaseNode) -> Dict[str, Any]:
"""Create AI Search index document from embedding result."""
doc: Dict[str, Any] = {}
doc["id"] = node.node_id
doc["chunk"] = node.get_content(metadata_mode=MetadataMode.NONE) or ""
doc["embedding"] = node.get_embedding()
doc["doc_id"] = node.ref_doc_id
node_metadata = node_to_metadata_dict(
node,
remove_text=True,
flat_metadata=self.flat_metadata,
)
doc["metadata"] = json.dumps(node_metadata)
return self._index_mapping(doc, node_metadata)
def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
"""
Delete documents from the AI Search Index
with doc_id_field_key field equal to ref_doc_id.
"""
# Locate documents to delete
filter = f'{self._field_mapping["doc_id"]} eq \'{ref_doc_id}\''
results = self._search_client.search(search_text="*", filter=filter)
logger.debug(f"Searching with filter {filter}")
docs_to_delete = []
for result in results:
doc = {}
doc["id"] = result[self._field_mapping["id"]]
logger.debug(f"Found document to delete: {doc}")
docs_to_delete.append(doc)
if len(docs_to_delete) > 0:
logger.debug(f"Deleting {len(docs_to_delete)} documents")
self._search_client.delete_documents(docs_to_delete)
def _create_odata_filter(self, metadata_filters: MetadataFilters) -> str:
"""Generate an OData filter string using supplied metadata filters."""
odata_filter: List[str] = []
for f in metadata_filters.legacy_filters():
if not isinstance(f, ExactMatchFilter):
raise NotImplementedError(
"Only `ExactMatchFilter` filters are supported"
)
# Raise error if filtering on a metadata field that lacks a mapping to
# an index field
metadata_mapping = self._metadata_to_index_field_map.get(f.key)
if not metadata_mapping:
raise ValueError(
f"Metadata field '{f.key}' is missing a mapping to an index field, "
"provide entry in 'filterable_metadata_field_keys' for this "
"vector store"
)
index_field = metadata_mapping[0]
if len(odata_filter) > 0:
odata_filter.append(" and ")
if isinstance(f.value, str):
escaped_value = "".join([("''" if s == "'" else s) for s in f.value])
odata_filter.append(f"{index_field} eq '{escaped_value}'")
else:
odata_filter.append(f"{index_field} eq {f.value}")
odata_expr = "".join(odata_filter)
logger.info(f"Odata filter: {odata_expr}")
return odata_expr
def query(self, query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult:
odata_filter = None
if query.filters is not None:
odata_filter = self._create_odata_filter(query.filters)
azure_query_result_search: AzureQueryResultSearchBase = (
AzureQueryResultSearchDefault(
query, self._field_mapping, odata_filter, self._search_client
)
)
if query.mode == VectorStoreQueryMode.SPARSE:
azure_query_result_search = AzureQueryResultSearchSparse(
query, self._field_mapping, odata_filter, self._search_client
)
elif query.mode == VectorStoreQueryMode.HYBRID:
azure_query_result_search = AzureQueryResultSearchHybrid(
query, self._field_mapping, odata_filter, self._search_client
)
elif query.mode == VectorStoreQueryMode.SEMANTIC_HYBRID:
azure_query_result_search = AzureQueryResultSearchSemanticHybrid(
query, self._field_mapping, odata_filter, self._search_client
)
return azure_query_result_search.search()
|