Index
Response builder class.
This class provides general functions for taking in a set of text and generating a response.
Will support different modes, from 1) stuffing chunks into prompt, 2) create and refine separately over each chunk, 3) tree summarization.
BaseSynthesizer #
Bases: ChainableMixin
, PromptMixin
Response builder class.
Source code in llama-index-core/llama_index/core/response_synthesizers/base.py
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
|
get_response
abstractmethod
#
get_response(query_str: str, text_chunks: Sequence[str], **response_kwargs: Any) -> RESPONSE_TEXT_TYPE
Get response.
Source code in llama-index-core/llama_index/core/response_synthesizers/base.py
122 123 124 125 126 127 128 129 130 |
|
aget_response
abstractmethod
async
#
aget_response(query_str: str, text_chunks: Sequence[str], **response_kwargs: Any) -> RESPONSE_TEXT_TYPE
Get response.
Source code in llama-index-core/llama_index/core/response_synthesizers/base.py
132 133 134 135 136 137 138 139 140 |
|
get_response_synthesizer #
get_response_synthesizer(llm: Optional[LLMPredictorType] = None, prompt_helper: Optional[PromptHelper] = None, service_context: Optional[ServiceContext] = None, text_qa_template: Optional[BasePromptTemplate] = None, refine_template: Optional[BasePromptTemplate] = None, summary_template: Optional[BasePromptTemplate] = None, simple_template: Optional[BasePromptTemplate] = None, response_mode: ResponseMode = ResponseMode.COMPACT, callback_manager: Optional[CallbackManager] = None, use_async: bool = False, streaming: bool = False, structured_answer_filtering: bool = False, output_cls: Optional[BaseModel] = None, program_factory: Optional[Callable[[PromptTemplate], BasePydanticProgram]] = None, verbose: bool = False) -> BaseSynthesizer
Get a response synthesizer.
Source code in llama-index-core/llama_index/core/response_synthesizers/factory.py
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
|
ResponseMode #
Bases: str
, Enum
Response modes of the response builder (and synthesizer).
Source code in llama-index-core/llama_index/core/response_synthesizers/type.py
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
|
REFINE
class-attribute
instance-attribute
#
REFINE = 'refine'
Refine is an iterative way of generating a response. We first use the context in the first node, along with the query, to generate an initial answer. We then pass this answer, the query, and the context of the second node as input into a “refine prompt” to generate a refined answer. We refine through N-1 nodes, where N is the total number of nodes.
COMPACT
class-attribute
instance-attribute
#
COMPACT = 'compact'
Compact and refine mode first combine text chunks into larger consolidated chunks that more fully utilize the available context window, then refine answers across them. This mode is faster than refine since we make fewer calls to the LLM.
SIMPLE_SUMMARIZE
class-attribute
instance-attribute
#
SIMPLE_SUMMARIZE = 'simple_summarize'
Merge all text chunks into one, and make a LLM call. This will fail if the merged text chunk exceeds the context window size.
TREE_SUMMARIZE
class-attribute
instance-attribute
#
TREE_SUMMARIZE = 'tree_summarize'
Build a tree index over the set of candidate nodes, with a summary prompt seeded with the query. The tree is built in a bottoms-up fashion, and in the end the root node is returned as the response
GENERATION
class-attribute
instance-attribute
#
GENERATION = 'generation'
Ignore context, just use LLM to generate a response.
NO_TEXT
class-attribute
instance-attribute
#
NO_TEXT = 'no_text'
Return the retrieved context nodes, without synthesizing a final response.
ACCUMULATE
class-attribute
instance-attribute
#
ACCUMULATE = 'accumulate'
Synthesize a response for each text chunk, and then return the concatenation.
COMPACT_ACCUMULATE
class-attribute
instance-attribute
#
COMPACT_ACCUMULATE = 'compact_accumulate'
Compact and accumulate mode first combine text chunks into larger consolidated chunks that more fully utilize the available context window, then accumulate answers for each of them and finally return the concatenation. This mode is faster than accumulate since we make fewer calls to the LLM.