Skip to content

Confluence

ConfluenceReader #

Bases: BaseReader

Confluence reader.

Reads a set of confluence pages given a space key and optionally a list of page ids

For more on OAuth login, checkout: - https://atlassian-python-api.readthedocs.io/index.html - https://developer.atlassian.com/cloud/confluence/oauth-2-3lo-apps/

Parameters:

Name Type Description Default
oauth2 dict

Atlassian OAuth 2.0, minimum fields are client_id and token, where token is a dict and must at least contain "access_token" and "token_type".

None
base_url str

'base_url' for confluence cloud instance, this is suffixed with '/wiki', eg 'https://yoursite.atlassian.com/wiki'

None
cloud bool

connecting to Confluence Cloud or self-hosted instance

True
Source code in llama-index-integrations/readers/llama-index-readers-confluence/llama_index/readers/confluence/base.py
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
class ConfluenceReader(BaseReader):
    """Confluence reader.

    Reads a set of confluence pages given a space key and optionally a list of page ids

    For more on OAuth login, checkout:
        - https://atlassian-python-api.readthedocs.io/index.html
        - https://developer.atlassian.com/cloud/confluence/oauth-2-3lo-apps/

    Args:
        oauth2 (dict): Atlassian OAuth 2.0, minimum fields are `client_id` and `token`, where `token` is a dict and must at least contain "access_token" and "token_type".
        base_url (str): 'base_url' for confluence cloud instance, this is suffixed with '/wiki', eg 'https://yoursite.atlassian.com/wiki'
        cloud (bool): connecting to Confluence Cloud or self-hosted instance

    """

    def __init__(
        self, base_url: str = None, oauth2: Optional[Dict] = None, cloud: bool = True
    ) -> None:
        if base_url is None:
            raise ValueError("Must provide `base_url`")

        self.base_url = base_url

        try:
            from atlassian import Confluence
        except ImportError:
            raise ImportError(
                "`atlassian` package not found, please run `pip install"
                " atlassian-python-api`"
            )
        self.confluence: Confluence = None
        if oauth2:
            self.confluence = Confluence(url=base_url, oauth2=oauth2, cloud=cloud)
        else:
            api_token = os.getenv(CONFLUENCE_API_TOKEN)
            if api_token is not None:
                self.confluence = Confluence(url=base_url, token=api_token, cloud=cloud)
            else:
                user_name = os.getenv(CONFLUENCE_USERNAME)
                if user_name is None:
                    raise ValueError(
                        "Must set environment variable `CONFLUENCE_USERNAME` if oauth,"
                        " oauth2, or `CONFLUENCE_API_TOKEN` are not provided."
                    )
                password = os.getenv(CONFLUENCE_PASSWORD)
                if password is None:
                    raise ValueError(
                        "Must set environment variable `CONFLUENCE_PASSWORD` if oauth,"
                        " oauth2, or `CONFLUENCE_API_TOKEN` are not provided."
                    )
                self.confluence = Confluence(
                    url=base_url, username=user_name, password=password, cloud=cloud
                )

        self._next_cursor = None

    def load_data(
        self,
        space_key: Optional[str] = None,
        page_ids: Optional[List[str]] = None,
        page_status: Optional[str] = None,
        label: Optional[str] = None,
        cql: Optional[str] = None,
        include_attachments=False,
        include_children=False,
        start: Optional[int] = None,
        cursor: Optional[str] = None,
        limit: Optional[int] = None,
        max_num_results: Optional[int] = None,
    ) -> List[Document]:
        """Load Confluence pages from Confluence, specifying by one of four mutually exclusive methods:
        `space_key`, `page_ids`, `label`, or `cql`
        (Confluence Query Language https://developer.atlassian.com/cloud/confluence/advanced-searching-using-cql/ ).

        Args:
            space_key (str): Confluence space key, eg 'DS'
            page_ids (list): List of page ids, eg ['123456', '123457']
            page_status (str): Page status, one of None (all statuses), 'current', 'draft', 'archived'.  Only compatible with space_key.
            label (str): Confluence label, eg 'my-label'
            cql (str): Confluence Query Language query, eg 'label="my-label"'
            include_attachments (bool): If True, include attachments.
            include_children (bool): If True, do a DFS of the descendants of each page_id in `page_ids`.  Only compatible with `page_ids`.
            start (int): Skips over the first n elements. Used only with space_key
            cursor (str): Skips to the cursor. Used with cql and label, set when the max limit has been hit for cql based search
            limit (int): Deprecated, use `max_num_results` instead.
            max_num_results (int): Maximum number of results to return.  If None, return all results.  Requests are made in batches to achieve the desired number of results.
        """
        num_space_key_parameter = 1 if space_key else 0
        num_page_ids_parameter = 1 if page_ids is not None else 0
        num_label_parameter = 1 if label else 0
        num_cql_parameter = 1 if cql else 0
        if (
            num_space_key_parameter
            + num_page_ids_parameter
            + num_label_parameter
            + num_cql_parameter
            != 1
        ):
            raise ValueError(
                "Must specify exactly one among `space_key`, `page_ids`, `label`, `cql`"
                " parameters."
            )

        if cursor and start:
            raise ValueError("Must not specify `start` when `cursor` is specified")

        if space_key and cursor:
            raise ValueError("Must not specify `cursor` when `space_key` is specified")

        if page_status and not space_key:
            raise ValueError(
                "Must specify `space_key` when `page_status` is specified."
            )

        if include_children and not page_ids:
            raise ValueError(
                "Must specify `page_ids` when `include_children` is specified."
            )

        if limit is not None:
            max_num_results = limit
            logger.warning(
                "`limit` is deprecated and no longer relates to the Confluence server's"
                " API limits.  If you wish to limit the number of returned results"
                " please use `max_num_results` instead."
            )

        try:
            import html2text  # type: ignore
        except ImportError:
            raise ImportError(
                "`html2text` package not found, please run `pip install html2text`"
            )

        text_maker = html2text.HTML2Text()
        text_maker.ignore_links = True
        text_maker.ignore_images = True

        if not start:
            start = 0

        pages: List = []
        if space_key:
            pages.extend(
                self._get_data_with_paging(
                    self.confluence.get_all_pages_from_space,
                    start=start,
                    max_num_results=max_num_results,
                    space=space_key,
                    status=page_status,
                    expand="body.export_view.value",
                    content_type="page",
                )
            )
        elif label:
            pages.extend(
                self._get_cql_data_with_paging(
                    start=start,
                    cursor=cursor,
                    cql=f'type="page" AND label="{label}"',
                    max_num_results=max_num_results,
                    expand="body.export_view.value",
                )
            )
        elif cql:
            pages.extend(
                self._get_cql_data_with_paging(
                    start=start,
                    cursor=cursor,
                    cql=cql,
                    max_num_results=max_num_results,
                    expand="body.export_view.value",
                )
            )
        elif page_ids:
            if include_children:
                dfs_page_ids = []
                max_num_remaining = max_num_results
                for page_id in page_ids:
                    current_dfs_page_ids = self._dfs_page_ids(
                        page_id, max_num_remaining
                    )
                    dfs_page_ids.extend(current_dfs_page_ids)
                    if max_num_results is not None:
                        max_num_remaining -= len(current_dfs_page_ids)
                        if max_num_remaining <= 0:
                            break
                page_ids = dfs_page_ids
            for page_id in (
                page_ids[:max_num_results] if max_num_results is not None else page_ids
            ):
                pages.append(
                    self._get_data_with_retry(
                        self.confluence.get_page_by_id,
                        page_id=page_id,
                        expand="body.export_view.value",
                    )
                )

        docs = []
        for page in pages:
            doc = self.process_page(page, include_attachments, text_maker)
            docs.append(doc)

        return docs

    def _dfs_page_ids(self, page_id, max_num_results):
        ret = [page_id]
        max_num_remaining = (
            (max_num_results - 1) if max_num_results is not None else None
        )
        if max_num_results is not None and max_num_remaining <= 0:
            return ret

        child_page_ids = self._get_data_with_paging(
            self.confluence.get_child_id_list,
            page_id=page_id,
            type="page",
            max_num_results=max_num_remaining,
        )
        for child_page_id in child_page_ids:
            dfs_ids = self._dfs_page_ids(child_page_id, max_num_remaining)
            ret.extend(dfs_ids)
            if max_num_results is not None:
                max_num_remaining -= len(dfs_ids)
                if max_num_remaining <= 0:
                    break
        return ret

    def _get_data_with_paging(
        self, paged_function, start=0, max_num_results=50, **kwargs
    ):
        max_num_remaining = max_num_results
        ret = []
        while True:
            results = self._get_data_with_retry(
                paged_function, start=start, limit=max_num_remaining, **kwargs
            )
            ret.extend(results)
            if (
                len(results) == 0
                or max_num_results is not None
                and len(results) >= max_num_remaining
            ):
                break

            start += len(results)
            if max_num_remaining is not None:
                max_num_remaining -= len(results)
        return ret

    def _get_cql_data_with_paging(
        self,
        cql,
        start=0,
        cursor=None,
        max_num_results=50,
        expand="body.export_view.value",
    ):
        max_num_remaining = max_num_results
        ret = []
        params = {"cql": cql, "start": start, "expand": expand}
        if cursor:
            params["cursor"] = unquote(cursor)

        if max_num_results is not None:
            params["limit"] = max_num_remaining
        while True:
            results = self._get_data_with_retry(
                self.confluence.get, path="rest/api/content/search", params=params
            )
            ret.extend(results["results"])

            params["start"] += len(results["results"])

            next_url = (
                results["_links"]["next"] if "next" in results["_links"] else None
            )
            if not next_url:
                self._next_cursor = None
                break

            if "cursor=" in next_url:  # On confluence Server this is not set
                cursor = next_url.split("cursor=")[1].split("&")[0]
                params["cursor"] = unquote(cursor)

            if max_num_results is not None:
                params["limit"] -= len(results["results"])
                if params["limit"] <= 0:
                    self._next_cursor = cursor
                    break

        return ret

    def get_next_cursor(self):
        """
        Returns: The last set cursor from a cql based search.
        """
        return self._next_cursor

    @retry(stop_max_attempt_number=1, wait_fixed=4)
    def _get_data_with_retry(self, function, **kwargs):
        return function(**kwargs)

    def process_page(self, page, include_attachments, text_maker):
        logger.info("Processing " + self.base_url + page["_links"]["webui"])

        if include_attachments:
            attachment_texts = self.process_attachment(page["id"])
        else:
            attachment_texts = []
        text = text_maker.handle(page["body"]["export_view"]["value"]) + "".join(
            attachment_texts
        )
        return Document(
            text=text,
            doc_id=page["id"],
            extra_info={
                "title": page["title"],
                "page_id": page["id"],
                "status": page["status"],
                "url": self.base_url + page["_links"]["webui"],
            },
        )

    def process_attachment(self, page_id):
        try:
            pass
        except ImportError:
            raise ImportError(
                "`pytesseract` or `pdf2image` or `Pillow` package not found, please run"
                " `pip install pytesseract pdf2image Pillow`"
            )

        # depending on setup you may also need to set the correct path for poppler and tesseract
        attachments = self.confluence.get_attachments_from_content(page_id)["results"]
        texts = []
        for attachment in attachments:
            media_type = attachment["metadata"]["mediaType"]
            absolute_url = self.base_url + attachment["_links"]["download"]
            title = attachment["title"]
            if media_type == "application/pdf":
                logger.info("Processing PDF attachment " + absolute_url)
                text = title + self.process_pdf(absolute_url)
            elif (
                media_type == "image/png"
                or media_type == "image/jpg"
                or media_type == "image/jpeg"
                or media_type == "image/webp"
            ):
                logger.info("Processing image attachment " + absolute_url)
                text = title + self.process_image(absolute_url)
            elif (
                media_type
                == "application/vnd.openxmlformats-officedocument.wordprocessingml.document"
            ):
                logger.info("Processing Word document attachment " + absolute_url)
                text = title + self.process_doc(absolute_url)
            elif (
                media_type == "application/vnd.ms-excel"
                or media_type
                == "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
                or media_type == "application/vnd.ms-excel.sheet.macroenabled.12"
            ):
                if title.endswith(".csv") or absolute_url.endswith(".csv"):
                    logger.info("Processing CSV attachment " + absolute_url)
                    text = title + self.process_csv(absolute_url)
                else:
                    logger.info("Processing XLS attachment " + absolute_url)
                    text = title + self.process_xls(absolute_url)
            elif media_type == "application/vnd.ms-excel.sheet.binary.macroenabled.12":
                logger.info("Processing XLSB attachment " + absolute_url)
                text = title + self.process_xlsb(absolute_url)
            elif media_type == "text/csv":
                logger.info("Processing CSV attachment " + absolute_url)
                text = title + self.process_csv(absolute_url)
            elif media_type == "application/vnd.ms-outlook":
                logger.info("Processing Outlook message attachment " + absolute_url)
                text = title + self.process_msg(absolute_url)
            elif media_type == "text/html":
                logger.info("  Processing HTML attachment " + absolute_url)
                text = title + self.process_html(absolute_url)
            elif media_type == "text/plain":
                if title.endswith(".csv") or absolute_url.endswith(".csv"):
                    logger.info("Processing CSV attachment " + absolute_url)
                    text = title + self.process_csv(absolute_url)
                else:
                    logger.info("Processing Text attachment " + absolute_url)
                    text = title + self.process_txt(absolute_url)
            elif media_type == "image/svg+xml":
                logger.info("Processing SVG attachment " + absolute_url)
                text = title + self.process_svg(absolute_url)
            elif (
                media_type
                == "application/vnd.openxmlformats-officedocument.presentationml.presentation"
                or media_type
                == "application/vnd.ms-powerpoint.presentation.macroenabled.12"
            ):
                logger.info(
                    "Processing PowerPoint attachment "
                    + absolute_url
                    + " ("
                    + media_type
                    + ")"
                )
                text = title + self.process_ppt(absolute_url)
            else:
                logger.info(
                    f"Skipping unsupported attachment {absolute_url} of media_type {media_type}"
                )
                continue
            texts.append(text)

        return texts

    def process_pdf(self, link):
        try:
            import pytesseract  # type: ignore
            from pdf2image import convert_from_bytes  # type: ignore
        except ImportError:
            raise ImportError(
                "`pytesseract` or `pdf2image` package not found, please run `pip"
                " install pytesseract pdf2image`"
            )

        response = self.confluence.request(path=link, absolute=True)
        text = ""

        if (
            response.status_code != 200
            or response.content == b""
            or response.content is None
        ):
            return text
        try:
            images = convert_from_bytes(response.content)
        except ValueError:
            return text

        for i, image in enumerate(images):
            image_text = pytesseract.image_to_string(image)
            text += f"Page {i + 1}:\n{image_text}\n\n"

        return text

    def process_html(self, link):
        try:
            from bs4 import BeautifulSoup  # type: ignore
            import requests
        except ImportError:
            raise ImportError(
                "`beautifulsoup4` or `requests` package not found, please run `pip install beautifulsoup4 requests`"
            )

        try:
            response = requests.get(link)
            if response.status_code != 200:
                return "Error fetching HTML content: HTTP Status Code {}".format(
                    response.status_code
                )

            # Parse the HTML content and extract text
            soup = BeautifulSoup(response.content, "html.parser")
            return soup.get_text(separator=" ", strip=True)
        except Exception as e:
            logger.error(f"Error processing HTML file at {link}: {e}")
            return f"Error processing HTML file: {link}. An error occurred while fetching or parsing the content."

    def process_txt(self, link):
        try:
            import requests
        except ImportError:
            raise ImportError(
                "`requests` package not found, please run `pip install requests`"
            )

        try:
            response = requests.get(link)
            if response.status_code != 200:
                return "Error fetching text content: HTTP Status Code {}".format(
                    response.status_code
                )
            return response.text
        except Exception as e:
            logger.error(f"Error processing text file at {link}: {e}")
            return f"Error processing text file: {link}. An error occurred while fetching the content."

    def process_msg(self, link):
        try:
            import extract_msg  # type: ignore
            from io import BytesIO
        except ImportError:
            raise ImportError(
                "`extract-msg` package not found, please run `pip install extract-msg`"
            )

        response = self.confluence.request(path=link, absolute=True)
        text = ""

        if response.status_code != 200 or response.content in [b"", None]:
            logger.error(f"Failed to download .msg file from {link}")
            return text

        file_data = BytesIO(response.content)

        try:
            # Load the .msg file content
            with extract_msg.Message(file_data) as msg:
                subject = msg.subject
                sender = msg.sender
                to = msg.to
                cc = msg.cc
                body = msg.body

                # Compile the extracted information into a text string
                text = (
                    f"Subject: {subject}\nFrom: {sender}\nTo: {to}\nCC: {cc}\n\n{body}"
                )
        except Exception as e:
            logger.error(f"Error processing .msg file at {link}: {e}")
            return "Error processing .msg file."

        return text

    def process_image(self, link):
        try:
            from io import BytesIO  # type: ignore

            import pytesseract  # type: ignore
            from PIL import Image  # type: ignore
        except ImportError:
            raise ImportError(
                "`pytesseract` or `Pillow` package not found, please run `pip install"
                " pytesseract Pillow`"
            )

        text = ""

        try:
            response = self.confluence.request(path=link, absolute=True)
            # Check if the response status code indicates success (200 OK)
            if response.status_code == 200 and response.content:
                try:
                    image = Image.open(BytesIO(response.content))
                    text = pytesseract.image_to_string(image)
                except OSError:
                    # Handle errors that occur while opening or processing the image
                    logger.error(
                        f"Error processing image at {link}: Unable to open or read the image content."
                    )
                    return text
            else:
                # Log non-200 responses here if needed
                logger.error(
                    f"Error fetching image at {link}: HTTP status code {response.status_code}."
                )
                return text
        except requests.exceptions.RequestException as e:
            # This catches any Requests-related exceptions, including HTTPError, ConnectionError, etc.
            logger.error(f"Request error while fetching image at {link}: {e}")
            return text

        return text

    def process_doc(self, link):
        try:
            from io import BytesIO
            import docx2txt
            import zipfile  # Import zipfile to catch BadZipFile exceptions
        except ImportError:
            raise ImportError(
                "`docx2txt` package not found, please run `pip install docx2txt`"
            )

        text = ""

        try:
            response = self.confluence.request(path=link, absolute=True)
            if response.status_code != 200 or response.content in [b"", None]:
                logger.error(
                    f"Error fetching document at {link}: HTTP status code {response.status_code}."
                )
                return text

            file_data = BytesIO(response.content)
            try:
                text = docx2txt.process(file_data)
            except zipfile.BadZipFile:
                logger.error(
                    f"Error processing Word document at {link}: File is not a zip file."
                )
                return text
        except Exception as e:
            logger.error(f"Unexpected error processing document at {link}: {e}")
            return text

        return text

    def process_ppt(self, link):
        try:
            from io import BytesIO
            from pptx import Presentation  # type: ignore
        except ImportError:
            raise ImportError(
                "`python-pptx` package not found, please run `pip install python-pptx`"
            )

        response = self.confluence.request(path=link, absolute=True)
        text = ""

        if (
            response.status_code != 200
            or response.content == b""
            or response.content is None
        ):
            return text

        file_data = BytesIO(response.content)

        try:
            presentation = Presentation(file_data)
            for slide in presentation.slides:
                for shape in slide.shapes:
                    if hasattr(shape, "text"):
                        text += shape.text + " "
        except (
            Exception
        ) as e:  # Catching a general exception to handle any unexpected errors
            logger.error(f"Error processing PowerPoint file at {link}: {e}")
            text = f"Error processing PowerPoint file: {link}. The file might be corrupt or not a valid PowerPoint file."

        return text.strip()  # Remove any leading/trailing whitespace

    def process_xls(self, link):
        try:
            import pandas as pd  # type: ignore
        except ImportError:
            raise ImportError(
                "`pandas` package not found, please run `pip install pandas`"
            )
        try:
            from io import BytesIO
        except ImportError:
            raise ImportError("Failed to import BytesIO from io")

        response = self.confluence.request(path=link, absolute=True)
        text = ""

        if (
            response.status_code != 200
            or response.content == b""
            or response.content is None
        ):
            return text

        file_data = BytesIO(response.content)

        # Try to read the Excel file
        try:
            # Use pandas to read all sheets; returns a dict of DataFrame
            sheets = pd.read_excel(file_data, sheet_name=None, engine="openpyxl")
        except Exception as e:
            return f"Failed to read Excel file: {e!s}"

        for sheet_name, sheet_data in sheets.items():
            text += f"{sheet_name}:\n"
            for row_index, row in sheet_data.iterrows():
                text += "\t".join(str(value) for value in row) + "\n"
            text += "\n"

        return text.strip()

    def process_xlsb(self, link):
        try:
            import pandas as pd
            from io import BytesIO
        except ImportError:
            raise ImportError(
                "`pandas` package not found, please run `pip install pandas`"
            )

        response = self.confluence.request(path=link, absolute=True)
        text = ""

        if (
            response.status_code != 200
            or response.content == b""
            or response.content is None
        ):
            return text

        file_data = BytesIO(response.content)

        try:
            # Use pandas to read the .xlsb file, specifying pyxlsb as the engine
            df = pd.read_excel(file_data, engine="pyxlsb")
            # Convert the DataFrame to a text string
            text_rows = []
            for index, row in df.iterrows():
                text_rows.append(", ".join(row.astype(str)))
            text = "\n".join(text_rows)
        except Exception as e:
            logger.error(f"Error processing XLSB file at {link}: {e}")
            text = "Error processing XLSB file."

        return text

    def process_csv(self, link):
        try:
            import pandas as pd
            from io import BytesIO
        except ImportError:
            raise ImportError(
                "`pandas` package not found, please run `pip install pandas`"
            )

        response = self.confluence.request(path=link, absolute=True)
        text = ""

        if (
            response.status_code != 200
            or response.content == b""
            or response.content is None
        ):
            return text

        file_data = BytesIO(response.content)

        try:
            # Assuming CSV uses default comma delimiter. If delimiter varies, consider detecting it.
            df = pd.read_csv(file_data, low_memory=False)
            # Convert the DataFrame to a text string, including headers
            text_rows = []
            for index, row in df.iterrows():
                text_rows.append(", ".join(row.astype(str)))
            text = "\n".join(text_rows)
        except Exception as e:
            logger.error(f"Error processing CSV file: {e}")
            text = "Error processing CSV file."

        return text

    def process_svg(self, link):
        try:
            from io import BytesIO  # type: ignore

            import pytesseract  # type: ignore
            from PIL import Image  # type: ignore
            from reportlab.graphics import renderPM  # type: ignore
            from svglib.svglib import svg2rlg  # type: ignore
        except ImportError:
            raise ImportError(
                "`pytesseract`, `Pillow`, or `svglib` package not found, please run"
                " `pip install pytesseract Pillow svglib`"
            )

        response = self.confluence.request(path=link, absolute=True)
        text = ""

        if (
            response.status_code != 200
            or response.content == b""
            or response.content is None
        ):
            return text

        drawing = svg2rlg(BytesIO(response.content))

        img_data = BytesIO()
        renderPM.drawToFile(drawing, img_data, fmt="PNG")
        img_data.seek(0)
        image = Image.open(img_data)

        return pytesseract.image_to_string(image)

load_data #

load_data(space_key: Optional[str] = None, page_ids: Optional[List[str]] = None, page_status: Optional[str] = None, label: Optional[str] = None, cql: Optional[str] = None, include_attachments=False, include_children=False, start: Optional[int] = None, cursor: Optional[str] = None, limit: Optional[int] = None, max_num_results: Optional[int] = None) -> List[Document]

Load Confluence pages from Confluence, specifying by one of four mutually exclusive methods: space_key, page_ids, label, or cql (Confluence Query Language https://developer.atlassian.com/cloud/confluence/advanced-searching-using-cql/ ).

Parameters:

Name Type Description Default
space_key str

Confluence space key, eg 'DS'

None
page_ids list

List of page ids, eg ['123456', '123457']

None
page_status str

Page status, one of None (all statuses), 'current', 'draft', 'archived'. Only compatible with space_key.

None
label str

Confluence label, eg 'my-label'

None
cql str

Confluence Query Language query, eg 'label="my-label"'

None
include_attachments bool

If True, include attachments.

False
include_children bool

If True, do a DFS of the descendants of each page_id in page_ids. Only compatible with page_ids.

False
start int

Skips over the first n elements. Used only with space_key

None
cursor str

Skips to the cursor. Used with cql and label, set when the max limit has been hit for cql based search

None
limit int

Deprecated, use max_num_results instead.

None
max_num_results int

Maximum number of results to return. If None, return all results. Requests are made in batches to achieve the desired number of results.

None
Source code in llama-index-integrations/readers/llama-index-readers-confluence/llama_index/readers/confluence/base.py
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
def load_data(
    self,
    space_key: Optional[str] = None,
    page_ids: Optional[List[str]] = None,
    page_status: Optional[str] = None,
    label: Optional[str] = None,
    cql: Optional[str] = None,
    include_attachments=False,
    include_children=False,
    start: Optional[int] = None,
    cursor: Optional[str] = None,
    limit: Optional[int] = None,
    max_num_results: Optional[int] = None,
) -> List[Document]:
    """Load Confluence pages from Confluence, specifying by one of four mutually exclusive methods:
    `space_key`, `page_ids`, `label`, or `cql`
    (Confluence Query Language https://developer.atlassian.com/cloud/confluence/advanced-searching-using-cql/ ).

    Args:
        space_key (str): Confluence space key, eg 'DS'
        page_ids (list): List of page ids, eg ['123456', '123457']
        page_status (str): Page status, one of None (all statuses), 'current', 'draft', 'archived'.  Only compatible with space_key.
        label (str): Confluence label, eg 'my-label'
        cql (str): Confluence Query Language query, eg 'label="my-label"'
        include_attachments (bool): If True, include attachments.
        include_children (bool): If True, do a DFS of the descendants of each page_id in `page_ids`.  Only compatible with `page_ids`.
        start (int): Skips over the first n elements. Used only with space_key
        cursor (str): Skips to the cursor. Used with cql and label, set when the max limit has been hit for cql based search
        limit (int): Deprecated, use `max_num_results` instead.
        max_num_results (int): Maximum number of results to return.  If None, return all results.  Requests are made in batches to achieve the desired number of results.
    """
    num_space_key_parameter = 1 if space_key else 0
    num_page_ids_parameter = 1 if page_ids is not None else 0
    num_label_parameter = 1 if label else 0
    num_cql_parameter = 1 if cql else 0
    if (
        num_space_key_parameter
        + num_page_ids_parameter
        + num_label_parameter
        + num_cql_parameter
        != 1
    ):
        raise ValueError(
            "Must specify exactly one among `space_key`, `page_ids`, `label`, `cql`"
            " parameters."
        )

    if cursor and start:
        raise ValueError("Must not specify `start` when `cursor` is specified")

    if space_key and cursor:
        raise ValueError("Must not specify `cursor` when `space_key` is specified")

    if page_status and not space_key:
        raise ValueError(
            "Must specify `space_key` when `page_status` is specified."
        )

    if include_children and not page_ids:
        raise ValueError(
            "Must specify `page_ids` when `include_children` is specified."
        )

    if limit is not None:
        max_num_results = limit
        logger.warning(
            "`limit` is deprecated and no longer relates to the Confluence server's"
            " API limits.  If you wish to limit the number of returned results"
            " please use `max_num_results` instead."
        )

    try:
        import html2text  # type: ignore
    except ImportError:
        raise ImportError(
            "`html2text` package not found, please run `pip install html2text`"
        )

    text_maker = html2text.HTML2Text()
    text_maker.ignore_links = True
    text_maker.ignore_images = True

    if not start:
        start = 0

    pages: List = []
    if space_key:
        pages.extend(
            self._get_data_with_paging(
                self.confluence.get_all_pages_from_space,
                start=start,
                max_num_results=max_num_results,
                space=space_key,
                status=page_status,
                expand="body.export_view.value",
                content_type="page",
            )
        )
    elif label:
        pages.extend(
            self._get_cql_data_with_paging(
                start=start,
                cursor=cursor,
                cql=f'type="page" AND label="{label}"',
                max_num_results=max_num_results,
                expand="body.export_view.value",
            )
        )
    elif cql:
        pages.extend(
            self._get_cql_data_with_paging(
                start=start,
                cursor=cursor,
                cql=cql,
                max_num_results=max_num_results,
                expand="body.export_view.value",
            )
        )
    elif page_ids:
        if include_children:
            dfs_page_ids = []
            max_num_remaining = max_num_results
            for page_id in page_ids:
                current_dfs_page_ids = self._dfs_page_ids(
                    page_id, max_num_remaining
                )
                dfs_page_ids.extend(current_dfs_page_ids)
                if max_num_results is not None:
                    max_num_remaining -= len(current_dfs_page_ids)
                    if max_num_remaining <= 0:
                        break
            page_ids = dfs_page_ids
        for page_id in (
            page_ids[:max_num_results] if max_num_results is not None else page_ids
        ):
            pages.append(
                self._get_data_with_retry(
                    self.confluence.get_page_by_id,
                    page_id=page_id,
                    expand="body.export_view.value",
                )
            )

    docs = []
    for page in pages:
        doc = self.process_page(page, include_attachments, text_maker)
        docs.append(doc)

    return docs

get_next_cursor #

get_next_cursor()

Returns: The last set cursor from a cql based search.

Source code in llama-index-integrations/readers/llama-index-readers-confluence/llama_index/readers/confluence/base.py
315
316
317
318
319
def get_next_cursor(self):
    """
    Returns: The last set cursor from a cql based search.
    """
    return self._next_cursor