Skip to content

Llm

Bases: QueryComponent

Base LLM component.

Source code in llama-index-core/llama_index/core/llms/llm.py
675
676
677
678
679
680
681
682
683
684
685
686
class BaseLLMComponent(QueryComponent):
    """Base LLM component."""

    llm: LLM = Field(..., description="LLM")
    streaming: bool = Field(default=False, description="Streaming mode")

    class Config:
        arbitrary_types_allowed = True

    def set_callback_manager(self, callback_manager: Any) -> None:
        """Set callback manager."""
        self.llm.callback_manager = callback_manager

set_callback_manager #

set_callback_manager(callback_manager: Any) -> None

Set callback manager.

Source code in llama-index-core/llama_index/core/llms/llm.py
684
685
686
def set_callback_manager(self, callback_manager: Any) -> None:
    """Set callback manager."""
    self.llm.callback_manager = callback_manager

Bases: BaseLLMComponent

LLM completion component.

Source code in llama-index-core/llama_index/core/llms/llm.py
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
class LLMCompleteComponent(BaseLLMComponent):
    """LLM completion component."""

    def _validate_component_inputs(self, input: Dict[str, Any]) -> Dict[str, Any]:
        """Validate component inputs during run_component."""
        if "prompt" not in input:
            raise ValueError("Prompt must be in input dict.")

        # do special check to see if prompt is a list of chat messages
        if isinstance(input["prompt"], get_args(List[ChatMessage])):
            input["prompt"] = self.llm.messages_to_prompt(input["prompt"])
            input["prompt"] = validate_and_convert_stringable(input["prompt"])
        else:
            input["prompt"] = validate_and_convert_stringable(input["prompt"])
            input["prompt"] = self.llm.completion_to_prompt(input["prompt"])

        return input

    def _run_component(self, **kwargs: Any) -> Any:
        """Run component."""
        # TODO: support only complete for now
        # non-trivial to figure how to support chat/complete/etc.
        prompt = kwargs["prompt"]
        # ignore all other kwargs for now
        if self.streaming:
            response = self.llm.stream_complete(prompt, formatted=True)
        else:
            response = self.llm.complete(prompt, formatted=True)
        return {"output": response}

    async def _arun_component(self, **kwargs: Any) -> Any:
        """Run component."""
        # TODO: support only complete for now
        # non-trivial to figure how to support chat/complete/etc.
        prompt = kwargs["prompt"]
        # ignore all other kwargs for now
        response = await self.llm.acomplete(prompt, formatted=True)
        return {"output": response}

    @property
    def input_keys(self) -> InputKeys:
        """Input keys."""
        # TODO: support only complete for now
        return InputKeys.from_keys({"prompt"})

    @property
    def output_keys(self) -> OutputKeys:
        """Output keys."""
        return OutputKeys.from_keys({"output"})

input_keys property #

input_keys: InputKeys

Input keys.

output_keys property #

output_keys: OutputKeys

Output keys.

Bases: BaseLLMComponent

LLM chat component.

Source code in llama-index-core/llama_index/core/llms/llm.py
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
class LLMChatComponent(BaseLLMComponent):
    """LLM chat component."""

    def _validate_component_inputs(self, input: Dict[str, Any]) -> Dict[str, Any]:
        """Validate component inputs during run_component."""
        if "messages" not in input:
            raise ValueError("Messages must be in input dict.")

        # if `messages` is a string, convert to a list of chat message
        if isinstance(input["messages"], get_args(StringableInput)):
            input["messages"] = validate_and_convert_stringable(input["messages"])
            input["messages"] = prompt_to_messages(str(input["messages"]))

        for message in input["messages"]:
            if not isinstance(message, ChatMessage):
                raise ValueError("Messages must be a list of ChatMessage")
        return input

    def _run_component(self, **kwargs: Any) -> Any:
        """Run component."""
        # TODO: support only complete for now
        # non-trivial to figure how to support chat/complete/etc.
        messages = kwargs["messages"]
        if self.streaming:
            response = self.llm.stream_chat(messages)
        else:
            response = self.llm.chat(messages)
        return {"output": response}

    async def _arun_component(self, **kwargs: Any) -> Any:
        """Run component."""
        # TODO: support only complete for now
        # non-trivial to figure how to support chat/complete/etc.
        messages = kwargs["messages"]
        if self.streaming:
            response = await self.llm.astream_chat(messages)
        else:
            response = await self.llm.achat(messages)
        return {"output": response}

    @property
    def input_keys(self) -> InputKeys:
        """Input keys."""
        # TODO: support only complete for now
        return InputKeys.from_keys({"messages"})

    @property
    def output_keys(self) -> OutputKeys:
        """Output keys."""
        return OutputKeys.from_keys({"output"})

input_keys property #

input_keys: InputKeys

Input keys.

output_keys property #

output_keys: OutputKeys

Output keys.