Skip to content

Retry

RetryGuidelineQueryEngine #

Bases: BaseQueryEngine

Does retry with evaluator feedback if query engine fails evaluation.

Parameters:

Name Type Description Default
query_engine BaseQueryEngine

A query engine object

required
guideline_evaluator GuidelineEvaluator

A guideline evaluator object

required
resynthesize_query bool

Whether to resynthesize query

False
max_retries int

Maximum number of retries

3
callback_manager Optional[CallbackManager]

A callback manager object

None
Source code in llama-index-core/llama_index/core/query_engine/retry_query_engine.py
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
class RetryGuidelineQueryEngine(BaseQueryEngine):
    """Does retry with evaluator feedback
    if query engine fails evaluation.

    Args:
        query_engine (BaseQueryEngine): A query engine object
        guideline_evaluator (GuidelineEvaluator): A guideline evaluator object
        resynthesize_query (bool): Whether to resynthesize query
        max_retries (int): Maximum number of retries
        callback_manager (Optional[CallbackManager]): A callback manager object
    """

    def __init__(
        self,
        query_engine: BaseQueryEngine,
        guideline_evaluator: GuidelineEvaluator,
        resynthesize_query: bool = False,
        max_retries: int = 3,
        callback_manager: Optional[CallbackManager] = None,
        query_transformer: Optional[FeedbackQueryTransformation] = None,
    ) -> None:
        self._query_engine = query_engine
        self._guideline_evaluator = guideline_evaluator
        self.max_retries = max_retries
        self.resynthesize_query = resynthesize_query
        self.query_transformer = query_transformer or FeedbackQueryTransformation(
            resynthesize_query=self.resynthesize_query
        )
        super().__init__(callback_manager)

    def _get_prompt_modules(self) -> PromptMixinType:
        """Get prompt sub-modules."""
        return {
            "query_engine": self._query_engine,
            "guideline_evalator": self._guideline_evaluator,
        }

    def _query(self, query_bundle: QueryBundle) -> RESPONSE_TYPE:
        """Answer a query."""
        response = self._query_engine._query(query_bundle)
        if self.max_retries <= 0:
            return response
        typed_response = (
            response if isinstance(response, Response) else response.get_response()
        )
        query_str = query_bundle.query_str
        eval = self._guideline_evaluator.evaluate_response(query_str, typed_response)
        if eval.passing:
            logger.debug("Evaluation returned True.")
            return response
        else:
            logger.debug("Evaluation returned False.")
            new_query_engine = RetryGuidelineQueryEngine(
                self._query_engine,
                self._guideline_evaluator,
                self.resynthesize_query,
                self.max_retries - 1,
                self.callback_manager,
            )
            new_query = self.query_transformer.run(query_bundle, {"evaluation": eval})
            logger.debug("New query: %s", new_query.query_str)
            return new_query_engine.query(new_query)

    async def _aquery(self, query_bundle: QueryBundle) -> RESPONSE_TYPE:
        """Not supported."""
        return self._query(query_bundle)

RetryQueryEngine #

Bases: BaseQueryEngine

Does retry on query engine if it fails evaluation.

Parameters:

Name Type Description Default
query_engine BaseQueryEngine

A query engine object

required
evaluator BaseEvaluator

An evaluator object

required
max_retries int

Maximum number of retries

3
callback_manager Optional[CallbackManager]

A callback manager object

None
Source code in llama-index-core/llama_index/core/query_engine/retry_query_engine.py
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
class RetryQueryEngine(BaseQueryEngine):
    """Does retry on query engine if it fails evaluation.

    Args:
        query_engine (BaseQueryEngine): A query engine object
        evaluator (BaseEvaluator): An evaluator object
        max_retries (int): Maximum number of retries
        callback_manager (Optional[CallbackManager]): A callback manager object
    """

    def __init__(
        self,
        query_engine: BaseQueryEngine,
        evaluator: BaseEvaluator,
        max_retries: int = 3,
        callback_manager: Optional[CallbackManager] = None,
    ) -> None:
        self._query_engine = query_engine
        self._evaluator = evaluator
        self.max_retries = max_retries
        super().__init__(callback_manager)

    def _get_prompt_modules(self) -> PromptMixinType:
        """Get prompt sub-modules."""
        return {"query_engine": self._query_engine, "evaluator": self._evaluator}

    def _query(self, query_bundle: QueryBundle) -> RESPONSE_TYPE:
        """Answer a query."""
        response = self._query_engine._query(query_bundle)
        if self.max_retries <= 0:
            return response
        typed_response = (
            response if isinstance(response, Response) else response.get_response()
        )
        query_str = query_bundle.query_str
        eval = self._evaluator.evaluate_response(query_str, typed_response)
        if eval.passing:
            logger.debug("Evaluation returned True.")
            return response
        else:
            logger.debug("Evaluation returned False.")
            new_query_engine = RetryQueryEngine(
                self._query_engine, self._evaluator, self.max_retries - 1
            )
            query_transformer = FeedbackQueryTransformation()
            new_query = query_transformer.run(query_bundle, {"evaluation": eval})
            return new_query_engine.query(new_query)

    async def _aquery(self, query_bundle: QueryBundle) -> RESPONSE_TYPE:
        """Not supported."""
        return self._query(query_bundle)

RetrySourceQueryEngine #

Bases: BaseQueryEngine

Retry with different source nodes.

Source code in llama-index-core/llama_index/core/query_engine/retry_source_query_engine.py
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
class RetrySourceQueryEngine(BaseQueryEngine):
    """Retry with different source nodes."""

    def __init__(
        self,
        query_engine: RetrieverQueryEngine,
        evaluator: BaseEvaluator,
        llm: Optional[LLM] = None,
        max_retries: int = 3,
        callback_manager: Optional[CallbackManager] = None,
        # deprecated
        service_context: Optional[ServiceContext] = None,
    ) -> None:
        """Run a BaseQueryEngine with retries."""
        self._query_engine = query_engine
        self._evaluator = evaluator
        self._llm = llm or llm_from_settings_or_context(Settings, service_context)
        self.max_retries = max_retries
        super().__init__(
            callback_manager=callback_manager
            or callback_manager_from_settings_or_context(Settings, service_context)
        )

    def _get_prompt_modules(self) -> PromptMixinType:
        """Get prompt sub-modules."""
        return {"query_engine": self._query_engine, "evaluator": self._evaluator}

    def _query(self, query_bundle: QueryBundle) -> RESPONSE_TYPE:
        response = self._query_engine._query(query_bundle)
        if self.max_retries <= 0:
            return response
        typed_response = (
            response if isinstance(response, Response) else response.get_response()
        )
        query_str = query_bundle.query_str
        eval = self._evaluator.evaluate_response(query_str, typed_response)
        if eval.passing:
            logger.debug("Evaluation returned True.")
            return response
        else:
            logger.debug("Evaluation returned False.")
            # Test source nodes
            source_evals = [
                self._evaluator.evaluate(
                    query=query_str,
                    response=typed_response.response,
                    contexts=[source_node.get_content()],
                )
                for source_node in typed_response.source_nodes
            ]
            orig_nodes = typed_response.source_nodes
            assert len(source_evals) == len(orig_nodes)
            new_docs = []
            for node, eval_result in zip(orig_nodes, source_evals):
                if eval_result:
                    new_docs.append(Document(text=node.node.get_content()))
            if len(new_docs) == 0:
                raise ValueError("No source nodes passed evaluation.")
            new_index = SummaryIndex.from_documents(
                new_docs,
            )
            new_retriever_engine = RetrieverQueryEngine(new_index.as_retriever())
            new_query_engine = RetrySourceQueryEngine(
                new_retriever_engine,
                self._evaluator,
                self._llm,
                self.max_retries - 1,
            )
            return new_query_engine.query(query_bundle)

    async def _aquery(self, query_bundle: QueryBundle) -> RESPONSE_TYPE:
        """Not supported."""
        return self._query(query_bundle)