Skip to content

Pandas

PandasQueryEngine #

Bases: BaseQueryEngine

Pandas query engine.

Convert natural language to Pandas python code.

WARNING: This tool provides the Agent access to the eval function. Arbitrary code execution is possible on the machine running this tool. This tool is not recommended to be used in a production setting, and would require heavy sandboxing or virtual machines

Parameters:

Name Type Description Default
df DataFrame

Pandas dataframe to use.

required
instruction_str Optional[str]

Instruction string to use.

None
output_processor Optional[Callable[[str], str]]

Output processor. A callable that takes in the output string, pandas DataFrame, and any output kwargs and returns a string. eg.kwargs["max_colwidth"] = [int] is used to set the length of text that each column can display during str(df). Set it to a higher number if there is possibly long text in the dataframe.

required
pandas_prompt Optional[BasePromptTemplate]

Pandas prompt to use.

None
head int

Number of rows to show in the table context.

5
llm Optional[LLM]

Language model to use.

None
Source code in llama-index-core/llama_index/core/query_engine/pandas/pandas_query_engine.py
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
class PandasQueryEngine(BaseQueryEngine):
    """Pandas query engine.

    Convert natural language to Pandas python code.

    WARNING: This tool provides the Agent access to the `eval` function.
    Arbitrary code execution is possible on the machine running this tool.
    This tool is not recommended to be used in a production setting, and would
    require heavy sandboxing or virtual machines


    Args:
        df (pd.DataFrame): Pandas dataframe to use.
        instruction_str (Optional[str]): Instruction string to use.
        output_processor (Optional[Callable[[str], str]]): Output processor.
            A callable that takes in the output string, pandas DataFrame,
            and any output kwargs and returns a string.
            eg.kwargs["max_colwidth"] = [int] is used to set the length of text
            that each column can display during str(df). Set it to a higher number
            if there is possibly long text in the dataframe.
        pandas_prompt (Optional[BasePromptTemplate]): Pandas prompt to use.
        head (int): Number of rows to show in the table context.
        llm (Optional[LLM]): Language model to use.

    """

    def __init__(
        self,
        df: pd.DataFrame,
        instruction_str: Optional[str] = None,
        instruction_parser: Optional[PandasInstructionParser] = None,
        pandas_prompt: Optional[BasePromptTemplate] = None,
        output_kwargs: Optional[dict] = None,
        head: int = 5,
        verbose: bool = False,
        service_context: Optional[ServiceContext] = None,
        llm: Optional[LLM] = None,
        synthesize_response: bool = False,
        response_synthesis_prompt: Optional[BasePromptTemplate] = None,
        **kwargs: Any,
    ) -> None:
        """Initialize params."""
        self._df = df

        self._head = head
        self._pandas_prompt = pandas_prompt or DEFAULT_PANDAS_PROMPT
        self._instruction_str = instruction_str or DEFAULT_INSTRUCTION_STR
        self._instruction_parser = instruction_parser or PandasInstructionParser(
            df, output_kwargs or {}
        )
        self._verbose = verbose

        self._llm = llm or llm_from_settings_or_context(Settings, service_context)
        self._synthesize_response = synthesize_response
        self._response_synthesis_prompt = (
            response_synthesis_prompt or DEFAULT_RESPONSE_SYNTHESIS_PROMPT
        )

        super().__init__(
            callback_manager=callback_manager_from_settings_or_context(
                Settings, service_context
            )
        )

    def _get_prompt_modules(self) -> PromptMixinType:
        """Get prompt sub-modules."""
        return {}

    def _get_prompts(self) -> Dict[str, Any]:
        """Get prompts."""
        return {
            "pandas_prompt": self._pandas_prompt,
            "response_synthesis_prompt": self._response_synthesis_prompt,
        }

    def _update_prompts(self, prompts: PromptDictType) -> None:
        """Update prompts."""
        if "pandas_prompt" in prompts:
            self._pandas_prompt = prompts["pandas_prompt"]
        if "response_synthesis_prompt" in prompts:
            self._response_synthesis_prompt = prompts["response_synthesis_prompt"]

    @classmethod
    def from_index(cls, index: PandasIndex, **kwargs: Any) -> "PandasQueryEngine":
        logger.warning(
            "PandasIndex is deprecated. "
            "Directly construct PandasQueryEngine with df instead."
        )
        return cls(df=index.df, service_context=index.service_context, **kwargs)

    def _get_table_context(self) -> str:
        """Get table context."""
        return str(self._df.head(self._head))

    def _query(self, query_bundle: QueryBundle) -> Response:
        """Answer a query."""
        context = self._get_table_context()

        pandas_response_str = self._llm.predict(
            self._pandas_prompt,
            df_str=context,
            query_str=query_bundle.query_str,
            instruction_str=self._instruction_str,
        )

        if self._verbose:
            print_text(f"> Pandas Instructions:\n" f"```\n{pandas_response_str}\n```\n")
        pandas_output = self._instruction_parser.parse(pandas_response_str)
        if self._verbose:
            print_text(f"> Pandas Output: {pandas_output}\n")

        response_metadata = {
            "pandas_instruction_str": pandas_response_str,
            "raw_pandas_output": pandas_output,
        }
        if self._synthesize_response:
            response_str = str(
                self._llm.predict(
                    self._response_synthesis_prompt,
                    query_str=query_bundle.query_str,
                    pandas_instructions=pandas_response_str,
                    pandas_output=pandas_output,
                )
            )
        else:
            response_str = str(pandas_output)

        return Response(response=response_str, metadata=response_metadata)

    async def _aquery(self, query_bundle: QueryBundle) -> Response:
        return self._query(query_bundle)