Skip to content

Llama dataset metadata

LlamaDatasetMetadataPack #

Bases: BaseLlamaPack

A llamapack for creating and saving the necessary metadata files for submitting a llamadataset: card.json and README.md.

Source code in llama-index-packs/llama-index-packs-llama-dataset-metadata/llama_index/packs/llama_dataset_metadata/base.py
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
class LlamaDatasetMetadataPack(BaseLlamaPack):
    """A llamapack for creating and saving the necessary metadata files for
    submitting a llamadataset: card.json and README.md.
    """

    def run(
        self,
        index: BaseIndex,
        benchmark_df: pd.DataFrame,
        rag_dataset: "LabelledRagDataset",
        name: str,
        description: str,
        baseline_name: str,
        source_urls: Optional[List[str]] = None,
        code_url: Optional[str] = None,
    ):
        """Main usage for a llamapack. This will build the card.json and README.md
        and save them to local disk.

        Args:
            index (BaseIndex): the index from which query_engine is derived and
                used in the rag evaluation.
            benchmark_df (pd.DataFrame): the benchmark dataframe after using
                RagEvaluatorPack
            rag_dataset (LabelledRagDataset): the LabelledRagDataset used for
                evaluations
            name (str): The name of the new dataset e.g., "Paul Graham Essay Dataset"
            baseline_name (str): The name of the baseline e.g., "llamaindex"
            description (str): The description of the new dataset.
            source_urls (Optional[List[str]], optional): _description_. Defaults to None.
            code_url (Optional[str], optional): _description_. Defaults to None.
        """
        readme_obj = Readme(name=name)
        card_obj = DatasetCard.from_rag_evaluation(
            index=index,
            benchmark_df=benchmark_df,
            rag_dataset=rag_dataset,
            name=name,
            description=description,
            baseline_name=baseline_name,
            source_urls=source_urls,
            code_url=code_url,
        )

        # save card.json
        with open("card.json", "w") as f:
            json.dump(card_obj.dict(by_alias=True), f)

        # save README.md
        with open("README.md", "w") as f:
            f.write(readme_obj.create_readme())

run #

run(index: BaseIndex, benchmark_df: DataFrame, rag_dataset: LabelledRagDataset, name: str, description: str, baseline_name: str, source_urls: Optional[List[str]] = None, code_url: Optional[str] = None)

Main usage for a llamapack. This will build the card.json and README.md and save them to local disk.

Parameters:

Name Type Description Default
index BaseIndex

the index from which query_engine is derived and used in the rag evaluation.

required
benchmark_df DataFrame

the benchmark dataframe after using RagEvaluatorPack

required
rag_dataset LabelledRagDataset

the LabelledRagDataset used for evaluations

required
name str

The name of the new dataset e.g., "Paul Graham Essay Dataset"

required
baseline_name str

The name of the baseline e.g., "llamaindex"

required
description str

The description of the new dataset.

required
source_urls Optional[List[str]]

description. Defaults to None.

None
code_url Optional[str]

description. Defaults to None.

None
Source code in llama-index-packs/llama-index-packs-llama-dataset-metadata/llama_index/packs/llama_dataset_metadata/base.py
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
def run(
    self,
    index: BaseIndex,
    benchmark_df: pd.DataFrame,
    rag_dataset: "LabelledRagDataset",
    name: str,
    description: str,
    baseline_name: str,
    source_urls: Optional[List[str]] = None,
    code_url: Optional[str] = None,
):
    """Main usage for a llamapack. This will build the card.json and README.md
    and save them to local disk.

    Args:
        index (BaseIndex): the index from which query_engine is derived and
            used in the rag evaluation.
        benchmark_df (pd.DataFrame): the benchmark dataframe after using
            RagEvaluatorPack
        rag_dataset (LabelledRagDataset): the LabelledRagDataset used for
            evaluations
        name (str): The name of the new dataset e.g., "Paul Graham Essay Dataset"
        baseline_name (str): The name of the baseline e.g., "llamaindex"
        description (str): The description of the new dataset.
        source_urls (Optional[List[str]], optional): _description_. Defaults to None.
        code_url (Optional[str], optional): _description_. Defaults to None.
    """
    readme_obj = Readme(name=name)
    card_obj = DatasetCard.from_rag_evaluation(
        index=index,
        benchmark_df=benchmark_df,
        rag_dataset=rag_dataset,
        name=name,
        description=description,
        baseline_name=baseline_name,
        source_urls=source_urls,
        code_url=code_url,
    )

    # save card.json
    with open("card.json", "w") as f:
        json.dump(card_obj.dict(by_alias=True), f)

    # save README.md
    with open("README.md", "w") as f:
        f.write(readme_obj.create_readme())