Skip to content

Openllm

OpenLLM #

Bases: LLM

OpenLLM LLM.

Examples:

pip install llama-index-llms-openllm

# If needed, set the OPENLLM_ENDPOINT environment variable to a remote server address
# os.environ["OPENLLM_ENDPOINT"] = "remote_server_address"

from llama_index.llms.openllm import OpenLLM

# Set up the OpenLLM instance
llm = OpenLLM("HuggingFaceH4/zephyr-7b-alpha")

# Example completion using OpenLLM
response = llm.complete("To infinity, and beyond")
print(str(response))
Source code in llama-index-integrations/llms/llama-index-llms-openllm/llama_index/llms/openllm/base.py
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
class OpenLLM(LLM):
    """OpenLLM LLM.

    Examples:
        `pip install llama-index-llms-openllm`

        ```python
        # If needed, set the OPENLLM_ENDPOINT environment variable to a remote server address
        # os.environ["OPENLLM_ENDPOINT"] = "remote_server_address"

        from llama_index.llms.openllm import OpenLLM

        # Set up the OpenLLM instance
        llm = OpenLLM("HuggingFaceH4/zephyr-7b-alpha")

        # Example completion using OpenLLM
        response = llm.complete("To infinity, and beyond")
        print(str(response))
        ```
    """

    model_id: str = Field(
        description="Given Model ID from HuggingFace Hub. This can be either a pretrained ID or local path. This is synonymous to HuggingFace's '.from_pretrained' first argument"
    )
    model_version: Optional[str] = Field(
        description="Optional model version to save the model as."
    )
    model_tag: Optional[str] = Field(
        description="Optional tag to save to BentoML store."
    )
    prompt_template: Optional[str] = Field(
        description="Optional prompt template to pass for this LLM."
    )
    backend: Optional[Literal["vllm", "pt"]] = Field(
        description="Optional backend to pass for this LLM. By default, it will use vLLM if vLLM is available in local system. Otherwise, it will fallback to PyTorch."
    )
    quantize: Optional[Literal["awq", "gptq", "int8", "int4", "squeezellm"]] = Field(
        description="Optional quantization methods to use with this LLM. See OpenLLM's --quantize options from `openllm start` for more information."
    )
    serialization: Literal["safetensors", "legacy"] = Field(
        description="Optional serialization methods for this LLM to be save as. Default to 'safetensors', but will fallback to PyTorch pickle `.bin` on some models."
    )
    trust_remote_code: bool = Field(
        description="Optional flag to trust remote code. This is synonymous to Transformers' `trust_remote_code`. Default to False."
    )
    _llm: openllm.LLM[Any, Any]

    def __init__(
        self,
        model_id: str,
        model_version: Optional[str] = None,
        model_tag: Optional[str] = None,
        prompt_template: Optional[str] = None,
        backend: Optional[Literal["vllm", "pt"]] = None,
        *args: Any,
        quantize: Optional[Literal["awq", "gptq", "int8", "int4", "squeezellm"]] = None,
        serialization: Literal["safetensors", "legacy"] = "safetensors",
        trust_remote_code: bool = False,
        callback_manager: Optional[CallbackManager] = None,
        system_prompt: Optional[str] = None,
        messages_to_prompt: Optional[Callable[[Sequence[ChatMessage]], str]] = None,
        completion_to_prompt: Optional[Callable[[str], str]] = None,
        pydantic_program_mode: PydanticProgramMode = PydanticProgramMode.DEFAULT,
        **attrs: Any,
    ):
        self._llm = openllm.LLM[Any, Any](
            model_id,
            model_version=model_version,
            model_tag=model_tag,
            prompt_template=prompt_template,
            system_message=system_prompt,
            backend=backend,
            quantize=quantize,
            serialisation=serialization,
            trust_remote_code=trust_remote_code,
            embedded=True,
            **attrs,
        )
        if messages_to_prompt is None:
            messages_to_prompt = self._tokenizer_messages_to_prompt

        # NOTE: We need to do this here to ensure model is saved and revision is set correctly.
        assert self._llm.bentomodel

        super().__init__(
            model_id=model_id,
            model_version=self._llm.revision,
            model_tag=str(self._llm.tag),
            prompt_template=prompt_template,
            backend=self._llm.__llm_backend__,
            quantize=self._llm.quantise,
            serialization=self._llm._serialisation,
            trust_remote_code=self._llm.trust_remote_code,
            callback_manager=callback_manager,
            system_prompt=system_prompt,
            messages_to_prompt=messages_to_prompt,
            completion_to_prompt=completion_to_prompt,
            pydantic_program_mode=pydantic_program_mode,
        )

    @classmethod
    def class_name(cls) -> str:
        return "OpenLLM"

    @property
    def metadata(self) -> LLMMetadata:
        """LLM metadata."""
        return LLMMetadata(
            num_output=self._llm.config["max_new_tokens"],
            model_name=self.model_id,
        )

    def _tokenizer_messages_to_prompt(self, messages: Sequence[ChatMessage]) -> str:
        """Use the tokenizer to convert messages to prompt. Fallback to generic."""
        if hasattr(self._llm.tokenizer, "apply_chat_template"):
            return self._llm.tokenizer.apply_chat_template(
                [message.dict() for message in messages],
                tokenize=False,
                add_generation_prompt=True,
            )
        return generic_messages_to_prompt(messages)

    @llm_completion_callback()
    def complete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponse:
        return asyncio.run(self.acomplete(prompt, **kwargs))

    @llm_chat_callback()
    def chat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse:
        return asyncio.run(self.achat(messages, **kwargs))

    @property
    def _loop(self) -> asyncio.AbstractEventLoop:
        try:
            loop = asyncio.get_running_loop()
        except RuntimeError:
            loop = asyncio.get_event_loop()
        return loop

    @llm_completion_callback()
    def stream_complete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponseGen:
        generator = self.astream_complete(prompt, **kwargs)
        # Yield items from the queue synchronously
        while True:
            try:
                yield self._loop.run_until_complete(generator.__anext__())
            except StopAsyncIteration:
                break

    @llm_chat_callback()
    def stream_chat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponseGen:
        generator = self.astream_chat(messages, **kwargs)
        # Yield items from the queue synchronously
        while True:
            try:
                yield self._loop.run_until_complete(generator.__anext__())
            except StopAsyncIteration:
                break

    @llm_chat_callback()
    async def achat(
        self,
        messages: Sequence[ChatMessage],
        **kwargs: Any,
    ) -> ChatResponse:
        response = await self.acomplete(self.messages_to_prompt(messages), **kwargs)
        return completion_response_to_chat_response(response)

    @llm_completion_callback()
    async def acomplete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponse:
        response = await self._llm.generate(prompt, **kwargs)
        return CompletionResponse(
            text=response.outputs[0].text,
            raw=response.model_dump(),
            additional_kwargs={
                "prompt_token_ids": response.prompt_token_ids,
                "prompt_logprobs": response.prompt_logprobs,
                "finished": response.finished,
                "outputs": {
                    "token_ids": response.outputs[0].token_ids,
                    "cumulative_logprob": response.outputs[0].cumulative_logprob,
                    "logprobs": response.outputs[0].logprobs,
                    "finish_reason": response.outputs[0].finish_reason,
                },
            },
        )

    @llm_chat_callback()
    async def astream_chat(
        self,
        messages: Sequence[ChatMessage],
        **kwargs: Any,
    ) -> ChatResponseAsyncGen:
        async for response_chunk in self.astream_complete(
            self.messages_to_prompt(messages), **kwargs
        ):
            yield completion_response_to_chat_response(response_chunk)

    @llm_completion_callback()
    async def astream_complete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponseAsyncGen:
        config = self._llm.config.model_construct_env(**kwargs)
        if config["n"] > 1:
            logger.warning("Currently only support n=1")

        texts: List[List[str]] = [[]] * config["n"]

        async for response_chunk in self._llm.generate_iterator(prompt, **kwargs):
            for output in response_chunk.outputs:
                texts[output.index].append(output.text)
            yield CompletionResponse(
                text=response_chunk.outputs[0].text,
                delta=response_chunk.outputs[0].text,
                raw=response_chunk.model_dump(),
                additional_kwargs={
                    "prompt_token_ids": response_chunk.prompt_token_ids,
                    "prompt_logprobs": response_chunk.prompt_logprobs,
                    "finished": response_chunk.finished,
                    "outputs": {
                        "text": response_chunk.outputs[0].text,
                        "token_ids": response_chunk.outputs[0].token_ids,
                        "cumulative_logprob": response_chunk.outputs[
                            0
                        ].cumulative_logprob,
                        "logprobs": response_chunk.outputs[0].logprobs,
                        "finish_reason": response_chunk.outputs[0].finish_reason,
                    },
                },
            )

metadata property #

metadata: LLMMetadata

LLM metadata.

OpenLLMAPI #

Bases: LLM

OpenLLM Client interface. This is useful when interacting with a remote OpenLLM server.

Source code in llama-index-integrations/llms/llama-index-llms-openllm/llama_index/llms/openllm/base.py
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
class OpenLLMAPI(LLM):
    """OpenLLM Client interface. This is useful when interacting with a remote OpenLLM server."""

    address: Optional[str] = Field(
        description="OpenLLM server address. This could either be set here or via OPENLLM_ENDPOINT"
    )
    timeout: int = Field(description="Timeout for sending requests.")
    max_retries: int = Field(description="Maximum number of retries.")
    api_version: Literal["v1"] = Field(description="OpenLLM Server API version.")

    if TYPE_CHECKING:
        try:
            _sync_client: HTTPClient
            _async_client: AsyncHTTPClient
        except ImportError:
            _sync_client: Any  # type: ignore[no-redef]
            _async_client: Any  # type: ignore[no-redef]
    else:
        _sync_client: Any = PrivateAttr()
        _async_client: Any = PrivateAttr()

    def __init__(
        self,
        address: Optional[str] = None,
        timeout: int = 30,
        max_retries: int = 2,
        api_version: Literal["v1"] = "v1",
        **kwargs: Any,
    ):
        try:
            from openllm_client import AsyncHTTPClient, HTTPClient
        except ImportError:
            raise ImportError(
                f'"{type(self).__name__}" requires "openllm-client". Make sure to install with `pip install openllm-client`'
            )
        super().__init__(
            address=address,
            timeout=timeout,
            max_retries=max_retries,
            api_version=api_version,
            **kwargs,
        )
        self._sync_client = HTTPClient(
            address=address,
            timeout=timeout,
            max_retries=max_retries,
            api_version=api_version,
        )
        self._async_client = AsyncHTTPClient(
            address=address,
            timeout=timeout,
            max_retries=max_retries,
            api_version=api_version,
        )

    @classmethod
    def class_name(cls) -> str:
        return "OpenLLM_Client"

    @property
    def _server_metadata(self) -> "Metadata":
        return self._sync_client._metadata

    @property
    def _server_config(self) -> Dict[str, Any]:
        return self._sync_client._config

    @property
    def metadata(self) -> LLMMetadata:
        return LLMMetadata(
            num_output=self._server_config["max_new_tokens"],
            model_name=self._server_metadata.model_id.replace("/", "--"),
        )

    def _convert_messages_to_prompt(self, messages: Sequence[ChatMessage]) -> str:
        return self._sync_client.helpers.messages(
            messages=[
                {"role": message.role, "content": message.content}
                for message in messages
            ],
            add_generation_prompt=True,
        )

    async def _async_messages_to_prompt(self, messages: Sequence[ChatMessage]) -> str:
        return await self._async_client.helpers.messages(
            messages=[
                {"role": message.role, "content": message.content}
                for message in messages
            ],
            add_generation_prompt=True,
        )

    @llm_completion_callback()
    def complete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponse:
        response = self._sync_client.generate(prompt, **kwargs)
        return CompletionResponse(
            text=response.outputs[0].text,
            raw=response.model_dump(),
            additional_kwargs={
                "prompt_token_ids": response.prompt_token_ids,
                "prompt_logprobs": response.prompt_logprobs,
                "finished": response.finished,
                "outputs": {
                    "token_ids": response.outputs[0].token_ids,
                    "cumulative_logprob": response.outputs[0].cumulative_logprob,
                    "logprobs": response.outputs[0].logprobs,
                    "finish_reason": response.outputs[0].finish_reason,
                },
            },
        )

    @llm_completion_callback()
    def stream_complete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponseGen:
        for response_chunk in self._sync_client.generate_stream(prompt, **kwargs):
            yield CompletionResponse(
                text=response_chunk.text,
                delta=response_chunk.text,
                raw=response_chunk.model_dump(),
                additional_kwargs={"token_ids": response_chunk.token_ids},
            )

    @llm_chat_callback()
    def chat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse:
        return completion_response_to_chat_response(
            self.complete(self._convert_messages_to_prompt(messages), **kwargs)
        )

    @llm_chat_callback()
    def stream_chat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponseGen:
        for response_chunk in self.stream_complete(
            self._convert_messages_to_prompt(messages), **kwargs
        ):
            yield completion_response_to_chat_response(response_chunk)

    @llm_completion_callback()
    async def acomplete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponse:
        response = await self._async_client.generate(prompt, **kwargs)
        return CompletionResponse(
            text=response.outputs[0].text,
            raw=response.model_dump(),
            additional_kwargs={
                "prompt_token_ids": response.prompt_token_ids,
                "prompt_logprobs": response.prompt_logprobs,
                "finished": response.finished,
                "outputs": {
                    "token_ids": response.outputs[0].token_ids,
                    "cumulative_logprob": response.outputs[0].cumulative_logprob,
                    "logprobs": response.outputs[0].logprobs,
                    "finish_reason": response.outputs[0].finish_reason,
                },
            },
        )

    @llm_completion_callback()
    async def astream_complete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponseAsyncGen:
        async for response_chunk in self._async_client.generate_stream(
            prompt, **kwargs
        ):
            yield CompletionResponse(
                text=response_chunk.text,
                delta=response_chunk.text,
                raw=response_chunk.model_dump(),
                additional_kwargs={"token_ids": response_chunk.token_ids},
            )

    @llm_chat_callback()
    async def achat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponse:
        return completion_response_to_chat_response(
            await self.acomplete(
                await self._async_messages_to_prompt(messages), **kwargs
            )
        )

    @llm_chat_callback()
    async def astream_chat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponseAsyncGen:
        async for response_chunk in self.astream_complete(
            await self._async_messages_to_prompt(messages), **kwargs
        ):
            yield completion_response_to_chat_response(response_chunk)