Skip to content

Openai

OpenAI #

Bases: LLM

OpenAI LLM.

Examples:

pip install llama-index-llms-openai

import os
import openai

os.environ["OPENAI_API_KEY"] = "sk-..."
openai.api_key = os.environ["OPENAI_API_KEY"]

from llama_index.llms.openai import OpenAI

llm = OpenAI(model="gpt-3.5-turbo")

stream = llm.stream("Hi, write a short story")

for r in stream:
    print(r.delta, end="")
Source code in llama-index-integrations/llms/llama-index-llms-openai/llama_index/llms/openai/base.py
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
class OpenAI(LLM):
    """OpenAI LLM.

    Examples:
        `pip install llama-index-llms-openai`

        ```python
        import os
        import openai

        os.environ["OPENAI_API_KEY"] = "sk-..."
        openai.api_key = os.environ["OPENAI_API_KEY"]

        from llama_index.llms.openai import OpenAI

        llm = OpenAI(model="gpt-3.5-turbo")

        stream = llm.stream("Hi, write a short story")

        for r in stream:
            print(r.delta, end="")
        ```
    """

    model: str = Field(
        default=DEFAULT_OPENAI_MODEL, description="The OpenAI model to use."
    )
    temperature: float = Field(
        default=DEFAULT_TEMPERATURE,
        description="The temperature to use during generation.",
        gte=0.0,
        lte=1.0,
    )
    max_tokens: Optional[int] = Field(
        description="The maximum number of tokens to generate.",
        gt=0,
    )
    logprobs: Optional[bool] = Field(
        description="Whether to return logprobs per token."
    )
    top_logprobs: int = Field(
        description="The number of top token log probs to return.",
        default=0,
        gte=0,
        lte=20,
    )
    additional_kwargs: Dict[str, Any] = Field(
        default_factory=dict, description="Additional kwargs for the OpenAI API."
    )
    max_retries: int = Field(
        default=3,
        description="The maximum number of API retries.",
        gte=0,
    )
    timeout: float = Field(
        default=60.0,
        description="The timeout, in seconds, for API requests.",
        gte=0,
    )
    default_headers: Dict[str, str] = Field(
        default=None, description="The default headers for API requests."
    )
    reuse_client: bool = Field(
        default=True,
        description=(
            "Reuse the OpenAI client between requests. When doing anything with large "
            "volumes of async API calls, setting this to false can improve stability."
        ),
    )

    api_key: str = Field(default=None, description="The OpenAI API key.")
    api_base: str = Field(description="The base URL for OpenAI API.")
    api_version: str = Field(description="The API version for OpenAI API.")

    _client: Optional[SyncOpenAI] = PrivateAttr()
    _aclient: Optional[AsyncOpenAI] = PrivateAttr()
    _http_client: Optional[httpx.Client] = PrivateAttr()

    def __init__(
        self,
        model: str = DEFAULT_OPENAI_MODEL,
        temperature: float = DEFAULT_TEMPERATURE,
        max_tokens: Optional[int] = None,
        additional_kwargs: Optional[Dict[str, Any]] = None,
        max_retries: int = 3,
        timeout: float = 60.0,
        reuse_client: bool = True,
        api_key: Optional[str] = None,
        api_base: Optional[str] = None,
        api_version: Optional[str] = None,
        callback_manager: Optional[CallbackManager] = None,
        default_headers: Optional[Dict[str, str]] = None,
        http_client: Optional[httpx.Client] = None,
        # base class
        system_prompt: Optional[str] = None,
        messages_to_prompt: Optional[Callable[[Sequence[ChatMessage]], str]] = None,
        completion_to_prompt: Optional[Callable[[str], str]] = None,
        pydantic_program_mode: PydanticProgramMode = PydanticProgramMode.DEFAULT,
        output_parser: Optional[BaseOutputParser] = None,
        **kwargs: Any,
    ) -> None:
        additional_kwargs = additional_kwargs or {}

        api_key, api_base, api_version = resolve_openai_credentials(
            api_key=api_key,
            api_base=api_base,
            api_version=api_version,
        )

        super().__init__(
            model=model,
            temperature=temperature,
            max_tokens=max_tokens,
            additional_kwargs=additional_kwargs,
            max_retries=max_retries,
            callback_manager=callback_manager,
            api_key=api_key,
            api_version=api_version,
            api_base=api_base,
            timeout=timeout,
            reuse_client=reuse_client,
            default_headers=default_headers,
            system_prompt=system_prompt,
            messages_to_prompt=messages_to_prompt,
            completion_to_prompt=completion_to_prompt,
            pydantic_program_mode=pydantic_program_mode,
            output_parser=output_parser,
            **kwargs,
        )

        self._client = None
        self._aclient = None
        self._http_client = http_client

    def _get_client(self) -> SyncOpenAI:
        if not self.reuse_client:
            return SyncOpenAI(**self._get_credential_kwargs())

        if self._client is None:
            self._client = SyncOpenAI(**self._get_credential_kwargs())
        return self._client

    def _get_aclient(self) -> AsyncOpenAI:
        if not self.reuse_client:
            return AsyncOpenAI(**self._get_credential_kwargs())

        if self._aclient is None:
            self._aclient = AsyncOpenAI(**self._get_credential_kwargs())
        return self._aclient

    def _get_model_name(self) -> str:
        model_name = self.model
        if "ft-" in model_name:  # legacy fine-tuning
            model_name = model_name.split(":")[0]
        elif model_name.startswith("ft:"):
            model_name = model_name.split(":")[1]
        return model_name

    def _is_azure_client(self) -> bool:
        return isinstance(self._get_client(), AzureOpenAI)

    @classmethod
    def class_name(cls) -> str:
        return "openai_llm"

    @property
    def _tokenizer(self) -> Optional[Tokenizer]:
        """
        Get a tokenizer for this model, or None if a tokenizing method is unknown.

        OpenAI can do this using the tiktoken package, subclasses may not have
        this convenience.
        """
        return tiktoken.encoding_for_model(self._get_model_name())

    @property
    def metadata(self) -> LLMMetadata:
        return LLMMetadata(
            context_window=openai_modelname_to_contextsize(self._get_model_name()),
            num_output=self.max_tokens or -1,
            is_chat_model=is_chat_model(model=self._get_model_name()),
            is_function_calling_model=is_function_calling_model(
                model=self._get_model_name()
            ),
            model_name=self.model,
        )

    @llm_chat_callback()
    def chat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse:
        if self._use_chat_completions(kwargs):
            chat_fn = self._chat
        else:
            chat_fn = completion_to_chat_decorator(self._complete)
        return chat_fn(messages, **kwargs)

    @llm_chat_callback()
    def stream_chat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponseGen:
        if self._use_chat_completions(kwargs):
            stream_chat_fn = self._stream_chat
        else:
            stream_chat_fn = stream_completion_to_chat_decorator(self._stream_complete)
        return stream_chat_fn(messages, **kwargs)

    @llm_completion_callback()
    def complete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponse:
        if self._use_chat_completions(kwargs):
            complete_fn = chat_to_completion_decorator(self._chat)
        else:
            complete_fn = self._complete
        return complete_fn(prompt, **kwargs)

    @llm_completion_callback()
    def stream_complete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponseGen:
        if self._use_chat_completions(kwargs):
            stream_complete_fn = stream_chat_to_completion_decorator(self._stream_chat)
        else:
            stream_complete_fn = self._stream_complete
        return stream_complete_fn(prompt, **kwargs)

    def _use_chat_completions(self, kwargs: Dict[str, Any]) -> bool:
        if "use_chat_completions" in kwargs:
            return kwargs["use_chat_completions"]
        return self.metadata.is_chat_model

    def _get_credential_kwargs(self) -> Dict[str, Any]:
        return {
            "api_key": self.api_key,
            "base_url": self.api_base,
            "max_retries": self.max_retries,
            "timeout": self.timeout,
            "default_headers": self.default_headers,
            "http_client": self._http_client,
        }

    def _get_model_kwargs(self, **kwargs: Any) -> Dict[str, Any]:
        base_kwargs = {"model": self.model, "temperature": self.temperature, **kwargs}
        if self.max_tokens is not None:
            # If max_tokens is None, don't include in the payload:
            # https://platform.openai.com/docs/api-reference/chat
            # https://platform.openai.com/docs/api-reference/completions
            base_kwargs["max_tokens"] = self.max_tokens
        if self.logprobs is not None and self.logprobs is True:
            if self.metadata.is_chat_model:
                base_kwargs["logprobs"] = self.logprobs
                base_kwargs["top_logprobs"] = self.top_logprobs
            else:
                base_kwargs["logprobs"] = self.top_logprobs  # int in this case
        return {**base_kwargs, **self.additional_kwargs}

    @llm_retry_decorator
    def _chat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse:
        client = self._get_client()
        message_dicts = to_openai_message_dicts(messages)
        response = client.chat.completions.create(
            messages=message_dicts,
            stream=False,
            **self._get_model_kwargs(**kwargs),
        )
        openai_message = response.choices[0].message
        message = from_openai_message(openai_message)
        openai_token_logprobs = response.choices[0].logprobs
        logprobs = None
        if openai_token_logprobs and openai_token_logprobs.content:
            logprobs = from_openai_token_logprobs(openai_token_logprobs.content)

        return ChatResponse(
            message=message,
            raw=response,
            logprobs=logprobs,
            additional_kwargs=self._get_response_token_counts(response),
        )

    def _update_tool_calls(
        self,
        tool_calls: List[ChoiceDeltaToolCall],
        tool_calls_delta: Optional[List[ChoiceDeltaToolCall]],
    ) -> List[ChoiceDeltaToolCall]:
        """Use the tool_calls_delta objects received from openai stream chunks
        to update the running tool_calls object.

        Args:
            tool_calls (List[ChoiceDeltaToolCall]): the list of tool calls
            tool_calls_delta (ChoiceDeltaToolCall): the delta to update tool_calls

        Returns:
            List[ChoiceDeltaToolCall]: the updated tool calls
        """
        # openai provides chunks consisting of tool_call deltas one tool at a time
        if tool_calls_delta is None:
            return tool_calls

        tc_delta = tool_calls_delta[0]

        if len(tool_calls) == 0:
            tool_calls.append(tc_delta)
        else:
            # we need to either update latest tool_call or start a
            # new tool_call (i.e., multiple tools in this turn) and
            # accumulate that new tool_call with future delta chunks
            t = tool_calls[-1]
            if t.index != tc_delta.index:
                # the start of a new tool call, so append to our running tool_calls list
                tool_calls.append(tc_delta)
            else:
                # not the start of a new tool call, so update last item of tool_calls

                # validations to get passed by mypy
                assert t.function is not None
                assert tc_delta.function is not None
                assert t.function.arguments is not None
                assert t.function.name is not None
                assert t.id is not None

                t.function.arguments += tc_delta.function.arguments or ""
                t.function.name += tc_delta.function.name or ""
                t.id += tc_delta.id or ""
        return tool_calls

    @llm_retry_decorator
    def _stream_chat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponseGen:
        client = self._get_client()
        message_dicts = to_openai_message_dicts(messages)

        def gen() -> ChatResponseGen:
            content = ""
            tool_calls: List[ChoiceDeltaToolCall] = []

            is_function = False
            for response in client.chat.completions.create(
                messages=message_dicts,
                stream=True,
                **self._get_model_kwargs(**kwargs),
            ):
                response = cast(ChatCompletionChunk, response)
                if len(response.choices) > 0:
                    delta = response.choices[0].delta
                else:
                    if self._is_azure_client():
                        continue
                    else:
                        delta = ChoiceDelta()

                # check if this chunk is the start of a function call
                if delta.tool_calls:
                    is_function = True

                # update using deltas
                role = delta.role or MessageRole.ASSISTANT
                content_delta = delta.content or ""
                content += content_delta

                additional_kwargs = {}
                if is_function:
                    tool_calls = self._update_tool_calls(tool_calls, delta.tool_calls)
                    additional_kwargs["tool_calls"] = tool_calls

                yield ChatResponse(
                    message=ChatMessage(
                        role=role,
                        content=content,
                        additional_kwargs=additional_kwargs,
                    ),
                    delta=content_delta,
                    raw=response,
                    additional_kwargs=self._get_response_token_counts(response),
                )

        return gen()

    @llm_retry_decorator
    def _complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:
        client = self._get_client()
        all_kwargs = self._get_model_kwargs(**kwargs)
        self._update_max_tokens(all_kwargs, prompt)

        response = client.completions.create(
            prompt=prompt,
            stream=False,
            **all_kwargs,
        )
        text = response.choices[0].text

        openai_completion_logprobs = response.choices[0].logprobs
        logprobs = None
        if openai_completion_logprobs:
            logprobs = from_openai_completion_logprobs(openai_completion_logprobs)

        return CompletionResponse(
            text=text,
            raw=response,
            logprobs=logprobs,
            additional_kwargs=self._get_response_token_counts(response),
        )

    @llm_retry_decorator
    def _stream_complete(self, prompt: str, **kwargs: Any) -> CompletionResponseGen:
        client = self._get_client()
        all_kwargs = self._get_model_kwargs(**kwargs)
        self._update_max_tokens(all_kwargs, prompt)

        def gen() -> CompletionResponseGen:
            text = ""
            for response in client.completions.create(
                prompt=prompt,
                stream=True,
                **all_kwargs,
            ):
                if len(response.choices) > 0:
                    delta = response.choices[0].text
                else:
                    delta = ""
                text += delta
                yield CompletionResponse(
                    delta=delta,
                    text=text,
                    raw=response,
                    additional_kwargs=self._get_response_token_counts(response),
                )

        return gen()

    def _update_max_tokens(self, all_kwargs: Dict[str, Any], prompt: str) -> None:
        """Infer max_tokens for the payload, if possible."""
        if self.max_tokens is not None or self._tokenizer is None:
            return
        # NOTE: non-chat completion endpoint requires max_tokens to be set
        num_tokens = len(self._tokenizer.encode(prompt))
        max_tokens = self.metadata.context_window - num_tokens
        if max_tokens <= 0:
            raise ValueError(
                f"The prompt has {num_tokens} tokens, which is too long for"
                " the model. Please use a prompt that fits within"
                f" {self.metadata.context_window} tokens."
            )
        all_kwargs["max_tokens"] = max_tokens

    def _get_response_token_counts(self, raw_response: Any) -> dict:
        """Get the token usage reported by the response."""
        if not isinstance(raw_response, dict):
            return {}

        usage = raw_response.get("usage", {})
        # NOTE: other model providers that use the OpenAI client may not report usage
        if usage is None:
            return {}

        return {
            "prompt_tokens": usage.get("prompt_tokens", 0),
            "completion_tokens": usage.get("completion_tokens", 0),
            "total_tokens": usage.get("total_tokens", 0),
        }

    def _get_tool_call(
        self,
        response: ChatResponse,
    ) -> OpenAIToolCall:
        tool_calls = response.message.additional_kwargs.get("tool_calls", [])

        if len(tool_calls) < 1:
            raise ValueError(
                f"Expected at least one tool call, but got {len(tool_calls)} tool calls."
            )

        # TODO: support more than one tool call?
        tool_call = tool_calls[0]
        if not isinstance(tool_call, get_args(OpenAIToolCall)):
            raise ValueError("Invalid tool_call object")

        if tool_call.type != "function":
            raise ValueError("Invalid tool type. Unsupported by OpenAI")

        return tool_call

    def _call_tool(
        self,
        tool_call: OpenAIToolCall,
        tools_by_name: Dict[str, "BaseTool"],
        verbose: bool = False,
    ) -> "AgentChatResponse":
        from llama_index.core.chat_engine.types import AgentChatResponse
        from llama_index.core.tools.calling import call_tool

        arguments_str = tool_call.function.arguments
        name = tool_call.function.name
        if verbose:
            print("=== Calling Function ===")
            print(f"Calling function: {name} with args: {arguments_str}")
        tool = tools_by_name[name]
        argument_dict = json.loads(arguments_str)

        tool_output = call_tool(tool, argument_dict)

        return AgentChatResponse(response=tool_output.content, sources=[tool_output])

    def predict_and_call(
        self,
        tools: List["BaseTool"],
        user_msg: Optional[Union[str, ChatMessage]] = None,
        chat_history: Optional[List[ChatMessage]] = None,
        verbose: bool = False,
        **kwargs: Any,
    ) -> "AgentChatResponse":
        if not self.metadata.is_function_calling_model:
            return super().predict_and_call(
                tools,
                user_msg=user_msg,
                chat_history=chat_history,
                verbose=verbose,
                **kwargs,
            )

        tool_specs = [tool.metadata.to_openai_tool() for tool in tools]
        tools_by_name = {tool.metadata.name: tool for tool in tools}

        if isinstance(user_msg, str):
            user_msg = ChatMessage(role=MessageRole.USER, content=user_msg)

        messages = chat_history or []
        if user_msg:
            messages.append(user_msg)

        response = self.chat(
            messages,
            tools=tool_specs,
            **kwargs,
        )

        tool_call = self._get_tool_call(response)

        return self._call_tool(tool_call, tools_by_name, verbose=verbose)

    # ===== Async Endpoints =====
    @llm_chat_callback()
    async def achat(
        self,
        messages: Sequence[ChatMessage],
        **kwargs: Any,
    ) -> ChatResponse:
        achat_fn: Callable[..., Awaitable[ChatResponse]]
        if self._use_chat_completions(kwargs):
            achat_fn = self._achat
        else:
            achat_fn = acompletion_to_chat_decorator(self._acomplete)
        return await achat_fn(messages, **kwargs)

    @llm_chat_callback()
    async def astream_chat(
        self,
        messages: Sequence[ChatMessage],
        **kwargs: Any,
    ) -> ChatResponseAsyncGen:
        astream_chat_fn: Callable[..., Awaitable[ChatResponseAsyncGen]]
        if self._use_chat_completions(kwargs):
            astream_chat_fn = self._astream_chat
        else:
            astream_chat_fn = astream_completion_to_chat_decorator(
                self._astream_complete
            )
        return await astream_chat_fn(messages, **kwargs)

    @llm_completion_callback()
    async def acomplete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponse:
        if self._use_chat_completions(kwargs):
            acomplete_fn = achat_to_completion_decorator(self._achat)
        else:
            acomplete_fn = self._acomplete
        return await acomplete_fn(prompt, **kwargs)

    @llm_completion_callback()
    async def astream_complete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponseAsyncGen:
        if self._use_chat_completions(kwargs):
            astream_complete_fn = astream_chat_to_completion_decorator(
                self._astream_chat
            )
        else:
            astream_complete_fn = self._astream_complete
        return await astream_complete_fn(prompt, **kwargs)

    @llm_retry_decorator
    async def _achat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponse:
        aclient = self._get_aclient()
        message_dicts = to_openai_message_dicts(messages)
        response = await aclient.chat.completions.create(
            messages=message_dicts, stream=False, **self._get_model_kwargs(**kwargs)
        )
        message_dict = response.choices[0].message
        message = from_openai_message(message_dict)
        logprobs_dict = response.choices[0].logprobs

        return ChatResponse(
            message=message,
            raw=response,
            additional_kwargs=self._get_response_token_counts(response),
        )

    @llm_retry_decorator
    async def _astream_chat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponseAsyncGen:
        aclient = self._get_aclient()
        message_dicts = to_openai_message_dicts(messages)

        async def gen() -> ChatResponseAsyncGen:
            content = ""
            tool_calls: List[ChoiceDeltaToolCall] = []

            is_function = False
            first_chat_chunk = True
            async for response in await aclient.chat.completions.create(
                messages=message_dicts,
                stream=True,
                **self._get_model_kwargs(**kwargs),
            ):
                response = cast(ChatCompletionChunk, response)
                if len(response.choices) > 0:
                    # check if the first chunk has neither content nor tool_calls
                    # this happens when 1106 models end up calling multiple tools
                    if (
                        first_chat_chunk
                        and response.choices[0].delta.content is None
                        and response.choices[0].delta.tool_calls is None
                    ):
                        first_chat_chunk = False
                        continue
                    delta = response.choices[0].delta
                else:
                    if self._is_azure_client():
                        continue
                    else:
                        delta = ChoiceDelta()
                first_chat_chunk = False

                # check if this chunk is the start of a function call
                if delta.tool_calls:
                    is_function = True

                # update using deltas
                role = delta.role or MessageRole.ASSISTANT
                content_delta = delta.content or ""
                content += content_delta

                additional_kwargs = {}
                if is_function:
                    tool_calls = self._update_tool_calls(tool_calls, delta.tool_calls)
                    additional_kwargs["tool_calls"] = tool_calls

                yield ChatResponse(
                    message=ChatMessage(
                        role=role,
                        content=content,
                        additional_kwargs=additional_kwargs,
                    ),
                    delta=content_delta,
                    raw=response,
                    additional_kwargs=self._get_response_token_counts(response),
                )

        return gen()

    @llm_retry_decorator
    async def _acomplete(self, prompt: str, **kwargs: Any) -> CompletionResponse:
        aclient = self._get_aclient()
        all_kwargs = self._get_model_kwargs(**kwargs)
        self._update_max_tokens(all_kwargs, prompt)

        response = await aclient.completions.create(
            prompt=prompt,
            stream=False,
            **all_kwargs,
        )

        text = response.choices[0].text
        openai_completion_logprobs = response.choices[0].logprobs
        logprobs = None
        if openai_completion_logprobs:
            logprobs = from_openai_completion_logprobs(openai_completion_logprobs)

        return CompletionResponse(
            text=text,
            raw=response,
            logprobs=logprobs,
            additional_kwargs=self._get_response_token_counts(response),
        )

    @llm_retry_decorator
    async def _astream_complete(
        self, prompt: str, **kwargs: Any
    ) -> CompletionResponseAsyncGen:
        aclient = self._get_aclient()
        all_kwargs = self._get_model_kwargs(**kwargs)
        self._update_max_tokens(all_kwargs, prompt)

        async def gen() -> CompletionResponseAsyncGen:
            text = ""
            async for response in await aclient.completions.create(
                prompt=prompt,
                stream=True,
                **all_kwargs,
            ):
                if len(response.choices) > 0:
                    delta = response.choices[0].text
                else:
                    delta = ""
                text += delta
                yield CompletionResponse(
                    delta=delta,
                    text=text,
                    raw=response,
                    additional_kwargs=self._get_response_token_counts(response),
                )

        return gen()

    async def _acall_tool(
        self,
        tool_call: OpenAIToolCall,
        tools_by_name: Dict[str, "BaseTool"],
        verbose: bool = False,
    ) -> "AgentChatResponse":
        from llama_index.core.chat_engine.types import AgentChatResponse
        from llama_index.core.tools.calling import acall_tool

        arguments_str = tool_call.function.arguments
        name = tool_call.function.name
        if verbose:
            print("=== Calling Function ===")
            print(f"Calling function: {name} with args: {arguments_str}")
        tool = tools_by_name[name]
        argument_dict = json.loads(arguments_str)

        tool_output = await acall_tool(tool, argument_dict)

        return AgentChatResponse(response=tool_output.content, sources=[tool_output])

    async def apredict_and_call(
        self,
        tools: List["BaseTool"],
        user_msg: Optional[Union[str, ChatMessage]] = None,
        chat_history: Optional[List[ChatMessage]] = None,
        verbose: bool = False,
        **kwargs: Any,
    ) -> "AgentChatResponse":
        if not self.metadata.is_function_calling_model:
            return await super().apredict_and_call(user_msg, tools, verbose, **kwargs)

        tool_specs = [tool.metadata.to_openai_tool() for tool in tools]
        tools_by_name = {tool.metadata.name: tool for tool in tools}

        if isinstance(user_msg, str):
            user_msg = ChatMessage(role=MessageRole.USER, content=user_msg)

        messages = chat_history or []
        if user_msg:
            messages.append(user_msg)

        response = await self.achat(
            messages,
            tools=tool_specs,
            **kwargs,
        )

        tool_call = self._get_tool_call(response)

        return await self._acall_tool(tool_call, tools_by_name, verbose=verbose)