fromllama_index.llms.bedrockimportBedrockllm=Bedrock(model="amazon.titan-text-express-v1",aws_access_key_id="AWS Access Key ID to use",aws_secret_access_key="AWS Secret Access Key to use",aws_session_token="AWS Session Token to use",aws_region_name="AWS Region to use, eg. us-east-1",)resp=llm.complete("Paul Graham is ")print(resp)
Source code in llama-index-integrations/llms/llama-index-llms-bedrock/llama_index/llms/bedrock/base.py
classBedrock(LLM):"""Bedrock LLM. Examples: `pip install llama-index-llms-bedrock` ```python from llama_index.llms.bedrock import Bedrock llm = Bedrock( model="amazon.titan-text-express-v1", aws_access_key_id="AWS Access Key ID to use", aws_secret_access_key="AWS Secret Access Key to use", aws_session_token="AWS Session Token to use", aws_region_name="AWS Region to use, eg. us-east-1", ) resp = llm.complete("Paul Graham is ") print(resp) ``` """model:str=Field(description="The modelId of the Bedrock model to use.")temperature:float=Field(description="The temperature to use for sampling.")max_tokens:int=Field(description="The maximum number of tokens to generate.")context_size:int=Field("The maximum number of tokens available for input.")profile_name:Optional[str]=Field(description="The name of aws profile to use. If not given, then the default profile is used.")aws_access_key_id:Optional[str]=Field(description="AWS Access Key ID to use",exclude=True)aws_secret_access_key:Optional[str]=Field(description="AWS Secret Access Key to use",exclude=True)aws_session_token:Optional[str]=Field(description="AWS Session Token to use",exclude=True)region_name:Optional[str]=Field(description="AWS region name to use. Uses region configured in AWS CLI if not passed",exclude=True,)botocore_session:Optional[Any]=Field(description="Use this Botocore session instead of creating a new default one.",exclude=True,)botocore_config:Optional[Any]=Field(description="Custom configuration object to use instead of the default generated one.",exclude=True,)max_retries:int=Field(default=10,description="The maximum number of API retries.",gt=0)timeout:float=Field(default=60.0,description="The timeout for the Bedrock API request in seconds. It will be used for both connect and read timeouts.",)additional_kwargs:Dict[str,Any]=Field(default_factory=dict,description="Additional kwargs for the bedrock invokeModel request.",)_client:Any=PrivateAttr()_aclient:Any=PrivateAttr()_provider:Provider=PrivateAttr()def__init__(self,model:str,temperature:Optional[float]=DEFAULT_TEMPERATURE,max_tokens:Optional[int]=512,context_size:Optional[int]=None,profile_name:Optional[str]=None,aws_access_key_id:Optional[str]=None,aws_secret_access_key:Optional[str]=None,aws_session_token:Optional[str]=None,region_name:Optional[str]=None,botocore_session:Optional[Any]=None,client:Optional[Any]=None,timeout:Optional[float]=60.0,max_retries:Optional[int]=10,botocore_config:Optional[Any]=None,additional_kwargs:Optional[Dict[str,Any]]=None,callback_manager:Optional[CallbackManager]=None,system_prompt:Optional[str]=None,messages_to_prompt:Optional[Callable[[Sequence[ChatMessage]],str]]=None,completion_to_prompt:Optional[Callable[[str],str]]=None,pydantic_program_mode:PydanticProgramMode=PydanticProgramMode.DEFAULT,output_parser:Optional[BaseOutputParser]=None,**kwargs:Any,)->None:ifcontext_sizeisNoneandmodelnotinBEDROCK_FOUNDATION_LLMS:raiseValueError("`context_size` argument not provided and""model provided refers to a non-foundation model."" Please specify the context_size")session_kwargs={"profile_name":profile_name,"region_name":region_name,"aws_access_key_id":aws_access_key_id,"aws_secret_access_key":aws_secret_access_key,"aws_session_token":aws_session_token,"botocore_session":botocore_session,}config=Nonetry:importboto3frombotocore.configimportConfigconfig=(Config(retries={"max_attempts":max_retries,"mode":"standard"},connect_timeout=timeout,read_timeout=timeout,)ifbotocore_configisNoneelsebotocore_config)session=boto3.Session(**session_kwargs)exceptImportError:raiseImportError("boto3 package not found, install with""'pip install boto3'")# Prior to general availability, custom boto3 wheel files were# distributed that used the bedrock service to invokeModel.# This check prevents any services still using those wheel files# from breakingifclientisnotNone:self._client=clientelif"bedrock-runtime"insession.get_available_services():self._client=session.client("bedrock-runtime",config=config)else:self._client=session.client("bedrock",config=config)additional_kwargs=additional_kwargsor{}callback_manager=callback_managerorCallbackManager([])context_size=context_sizeorBEDROCK_FOUNDATION_LLMS[model]self._provider=get_provider(model)messages_to_prompt=messages_to_promptorself._provider.messages_to_promptcompletion_to_prompt=(completion_to_promptorself._provider.completion_to_prompt)super().__init__(model=model,temperature=temperature,max_tokens=max_tokens,context_size=context_size,profile_name=profile_name,timeout=timeout,max_retries=max_retries,botocore_config=config,additional_kwargs=additional_kwargs,callback_manager=callback_manager,system_prompt=system_prompt,messages_to_prompt=messages_to_prompt,completion_to_prompt=completion_to_prompt,pydantic_program_mode=pydantic_program_mode,output_parser=output_parser,)@classmethoddefclass_name(cls)->str:"""Get class name."""return"Bedrock_LLM"@propertydefmetadata(self)->LLMMetadata:returnLLMMetadata(context_window=self.context_size,num_output=self.max_tokens,is_chat_model=self.modelinCHAT_ONLY_MODELS,model_name=self.model,)@propertydef_model_kwargs(self)->Dict[str,Any]:base_kwargs={"temperature":self.temperature,self._provider.max_tokens_key:self.max_tokens,}iftype(self._provider)isAnthropicProviderandself.system_prompt:base_kwargs["system"]=self.system_promptreturn{**base_kwargs,**self.additional_kwargs,}def_get_all_kwargs(self,**kwargs:Any)->Dict[str,Any]:return{**self._model_kwargs,**kwargs,}@llm_completion_callback()defcomplete(self,prompt:str,formatted:bool=False,**kwargs:Any)->CompletionResponse:ifnotformatted:prompt=self.completion_to_prompt(prompt)all_kwargs=self._get_all_kwargs(**kwargs)request_body=self._provider.get_request_body(prompt,all_kwargs)request_body_str=json.dumps(request_body)response=completion_with_retry(client=self._client,model=self.model,request_body=request_body_str,max_retries=self.max_retries,**all_kwargs,)["body"].read()response=json.loads(response)returnCompletionResponse(text=self._provider.get_text_from_response(response),raw=response)@llm_completion_callback()defstream_complete(self,prompt:str,formatted:bool=False,**kwargs:Any)->CompletionResponseGen:ifself.modelinBEDROCK_FOUNDATION_LLMSandself.modelnotinSTREAMING_MODELS:raiseValueError(f"Model {self.model} does not support streaming")ifnotformatted:prompt=self.completion_to_prompt(prompt)all_kwargs=self._get_all_kwargs(**kwargs)request_body=self._provider.get_request_body(prompt,all_kwargs)request_body_str=json.dumps(request_body)response=completion_with_retry(client=self._client,model=self.model,request_body=request_body_str,max_retries=self.max_retries,stream=True,**all_kwargs,)["body"]defgen()->CompletionResponseGen:content=""forrinresponse:r=json.loads(r["chunk"]["bytes"])content_delta=self._provider.get_text_from_stream_response(r)content+=content_deltayieldCompletionResponse(text=content,delta=content_delta,raw=r)returngen()@llm_chat_callback()defchat(self,messages:Sequence[ChatMessage],**kwargs:Any)->ChatResponse:prompt=self.messages_to_prompt(messages)completion_response=self.complete(prompt,formatted=True,**kwargs)returncompletion_response_to_chat_response(completion_response)defstream_chat(self,messages:Sequence[ChatMessage],**kwargs:Any)->ChatResponseGen:prompt=self.messages_to_prompt(messages)completion_response=self.stream_complete(prompt,formatted=True,**kwargs)returnstream_completion_response_to_chat_response(completion_response)asyncdefachat(self,messages:Sequence[ChatMessage],**kwargs:Any)->ChatResponse:"""Chat asynchronously."""# TODO: do synchronous chat for nowreturnself.chat(messages,**kwargs)asyncdefacomplete(self,prompt:str,formatted:bool=False,**kwargs:Any)->CompletionResponse:raiseNotImplementedErrorasyncdefastream_chat(self,messages:Sequence[ChatMessage],**kwargs:Any)->ChatResponseAsyncGen:raiseNotImplementedErrorasyncdefastream_complete(self,prompt:str,formatted:bool=False,**kwargs:Any)->CompletionResponseAsyncGen:raiseNotImplementedError
Source code in llama-index-integrations/llms/llama-index-llms-bedrock/llama_index/llms/bedrock/base.py
302303304305306307
asyncdefachat(self,messages:Sequence[ChatMessage],**kwargs:Any)->ChatResponse:"""Chat asynchronously."""# TODO: do synchronous chat for nowreturnself.chat(messages,**kwargs)