Skip to content

Anthropic

Anthropic #

Bases: LLM

Anthropic LLM.

Examples:

pip install llama-index-llms-anthropic

from llama_index.llms.anthropic import Anthropic

llm = Anthropic(model="claude-instant-1")
resp = llm.stream_complete("Paul Graham is ")
for r in resp:
    print(r.delta, end="")
Source code in llama-index-integrations/llms/llama-index-llms-anthropic/llama_index/llms/anthropic/base.py
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
class Anthropic(LLM):
    """Anthropic LLM.

    Examples:
        `pip install llama-index-llms-anthropic`

        ```python
        from llama_index.llms.anthropic import Anthropic

        llm = Anthropic(model="claude-instant-1")
        resp = llm.stream_complete("Paul Graham is ")
        for r in resp:
            print(r.delta, end="")
        ```
    """

    model: str = Field(
        default=DEFAULT_ANTHROPIC_MODEL, description="The anthropic model to use."
    )
    temperature: float = Field(
        default=DEFAULT_TEMPERATURE,
        description="The temperature to use for sampling.",
        gte=0.0,
        lte=1.0,
    )
    max_tokens: int = Field(
        default=DEFAULT_ANTHROPIC_MAX_TOKENS,
        description="The maximum number of tokens to generate.",
        gt=0,
    )

    base_url: Optional[str] = Field(default=None, description="The base URL to use.")
    timeout: Optional[float] = Field(
        default=None, description="The timeout to use in seconds.", gte=0
    )
    max_retries: int = Field(
        default=10, description="The maximum number of API retries.", gte=0
    )
    additional_kwargs: Dict[str, Any] = Field(
        default_factory=dict, description="Additional kwargs for the anthropic API."
    )

    _client: Any = PrivateAttr()
    _aclient: Any = PrivateAttr()

    def __init__(
        self,
        model: str = DEFAULT_ANTHROPIC_MODEL,
        temperature: float = DEFAULT_TEMPERATURE,
        max_tokens: int = DEFAULT_ANTHROPIC_MAX_TOKENS,
        base_url: Optional[str] = None,
        timeout: Optional[float] = None,
        max_retries: int = 10,
        api_key: Optional[str] = None,
        additional_kwargs: Optional[Dict[str, Any]] = None,
        callback_manager: Optional[CallbackManager] = None,
        system_prompt: Optional[str] = None,
        messages_to_prompt: Optional[Callable[[Sequence[ChatMessage]], str]] = None,
        completion_to_prompt: Optional[Callable[[str], str]] = None,
        pydantic_program_mode: PydanticProgramMode = PydanticProgramMode.DEFAULT,
        output_parser: Optional[BaseOutputParser] = None,
    ) -> None:
        additional_kwargs = additional_kwargs or {}
        callback_manager = callback_manager or CallbackManager([])

        self._client = anthropic.Anthropic(
            api_key=api_key, base_url=base_url, timeout=timeout, max_retries=max_retries
        )
        self._aclient = anthropic.AsyncAnthropic(
            api_key=api_key, base_url=base_url, timeout=timeout, max_retries=max_retries
        )

        super().__init__(
            temperature=temperature,
            max_tokens=max_tokens,
            additional_kwargs=additional_kwargs,
            base_url=base_url,
            timeout=timeout,
            max_retries=max_retries,
            model=model,
            callback_manager=callback_manager,
            system_prompt=system_prompt,
            messages_to_prompt=messages_to_prompt,
            completion_to_prompt=completion_to_prompt,
            pydantic_program_mode=pydantic_program_mode,
            output_parser=output_parser,
        )

    @classmethod
    def class_name(cls) -> str:
        return "Anthropic_LLM"

    @property
    def metadata(self) -> LLMMetadata:
        return LLMMetadata(
            context_window=anthropic_modelname_to_contextsize(self.model),
            num_output=self.max_tokens,
            is_chat_model=True,
            model_name=self.model,
        )

    @property
    def tokenizer(self) -> Tokenizer:
        return self._client.get_tokenizer()

    @property
    def _model_kwargs(self) -> Dict[str, Any]:
        base_kwargs = {
            "model": self.model,
            "temperature": self.temperature,
            "max_tokens": self.max_tokens,
        }
        return {
            **base_kwargs,
            **self.additional_kwargs,
        }

    def _get_all_kwargs(self, **kwargs: Any) -> Dict[str, Any]:
        return {
            **self._model_kwargs,
            **kwargs,
        }

    @llm_chat_callback()
    def chat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse:
        anthropic_messages, system_prompt = messages_to_anthropic_messages(messages)
        all_kwargs = self._get_all_kwargs(**kwargs)

        response = self._client.messages.create(
            messages=anthropic_messages,
            stream=False,
            system=system_prompt,
            **all_kwargs,
        )
        return ChatResponse(
            message=ChatMessage(
                role=MessageRole.ASSISTANT, content=response.content[0].text
            ),
            raw=dict(response),
        )

    @llm_completion_callback()
    def complete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponse:
        complete_fn = chat_to_completion_decorator(self.chat)
        return complete_fn(prompt, **kwargs)

    @llm_chat_callback()
    def stream_chat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponseGen:
        anthropic_messages, system_prompt = messages_to_anthropic_messages(messages)
        all_kwargs = self._get_all_kwargs(**kwargs)

        response = self._client.messages.create(
            messages=anthropic_messages, system=system_prompt, stream=True, **all_kwargs
        )

        def gen() -> ChatResponseGen:
            content = ""
            role = MessageRole.ASSISTANT
            for r in response:
                if isinstance(r, ContentBlockDeltaEvent):
                    content_delta = r.delta.text
                    content += content_delta
                    yield ChatResponse(
                        message=ChatMessage(role=role, content=content),
                        delta=content_delta,
                        raw=r,
                    )

        return gen()

    @llm_completion_callback()
    def stream_complete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponseGen:
        stream_complete_fn = stream_chat_to_completion_decorator(self.stream_chat)
        return stream_complete_fn(prompt, **kwargs)

    @llm_chat_callback()
    async def achat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponse:
        anthropic_messages, system_prompt = messages_to_anthropic_messages(messages)
        all_kwargs = self._get_all_kwargs(**kwargs)

        response = await self._aclient.messages.create(
            messages=anthropic_messages,
            system=system_prompt,
            stream=False,
            **all_kwargs,
        )
        return ChatResponse(
            message=ChatMessage(
                role=MessageRole.ASSISTANT, content=response.content[0].text
            ),
            raw=dict(response),
        )

    @llm_completion_callback()
    async def acomplete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponse:
        acomplete_fn = achat_to_completion_decorator(self.achat)
        return await acomplete_fn(prompt, **kwargs)

    @llm_chat_callback()
    async def astream_chat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponseAsyncGen:
        anthropic_messages, system_prompt = messages_to_anthropic_messages(messages)
        all_kwargs = self._get_all_kwargs(**kwargs)

        response = await self._aclient.messages.create(
            messages=anthropic_messages, system=system_prompt, stream=True, **all_kwargs
        )

        async def gen() -> ChatResponseAsyncGen:
            content = ""
            role = MessageRole.ASSISTANT
            async for r in response:
                if isinstance(r, ContentBlockDeltaEvent):
                    content_delta = r.delta.text
                    content += content_delta
                    yield ChatResponse(
                        message=ChatMessage(role=role, content=content),
                        delta=content_delta,
                        raw=r,
                    )

        return gen()

    @llm_completion_callback()
    async def astream_complete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponseAsyncGen:
        astream_complete_fn = astream_chat_to_completion_decorator(self.astream_chat)
        return await astream_complete_fn(prompt, **kwargs)