Skip to content

Index

IngestionPipeline #

Bases: BaseModel

An ingestion pipeline that can be applied to data.

Parameters:

Name Type Description Default
name str

Unique name of the ingestion pipeline. Defaults to DEFAULT_PIPELINE_NAME.

DEFAULT_PIPELINE_NAME
project_name str

Unique name of the project. Defaults to DEFAULT_PROJECT_NAME.

DEFAULT_PROJECT_NAME
transformations List[TransformComponent]

Transformations to apply to the data. Defaults to None.

None
documents Optional[Sequence[Document]]

Documents to ingest. Defaults to None.

None
readers Optional[List[ReaderConfig]]

Reader to use to read the data. Defaults to None.

None
vector_store Optional[BasePydanticVectorStore]

Vector store to use to store the data. Defaults to None.

None
cache Optional[IngestionCache]

Cache to use to store the data. Defaults to None.

None
docstore Optional[BaseDocumentStore]

Document store to use for de-duping with a vector store. Defaults to None.

None
docstore_strategy DocstoreStrategy

Document de-dup strategy. Defaults to DocstoreStrategy.UPSERTS.

UPSERTS
disable_cache bool

Disable the cache. Defaults to False.

False
base_url str

Base URL for the LlamaCloud API. Defaults to DEFAULT_BASE_URL.

None
app_url str

Base URL for the LlamaCloud app. Defaults to DEFAULT_APP_URL.

None
api_key Optional[str]

LlamaCloud API key. Defaults to None.

None

Examples:

from llama_index.core.ingestion import IngestionPipeline
from llama_index.core.node_parser import SentenceSplitter
from llama_index.embeddings.openai import OpenAIEmbedding

pipeline = IngestionPipeline(
    transformations=[
        SentenceSplitter(chunk_size=512, chunk_overlap=20),
        OpenAIEmbedding(),
    ],
)

nodes = pipeline.run(documents=documents)
Source code in llama-index-core/llama_index/core/ingestion/pipeline.py
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
class IngestionPipeline(BaseModel):
    """An ingestion pipeline that can be applied to data.

    Args:
        name (str, optional):
            Unique name of the ingestion pipeline. Defaults to DEFAULT_PIPELINE_NAME.
        project_name (str, optional):
            Unique name of the project. Defaults to DEFAULT_PROJECT_NAME.
        transformations (List[TransformComponent], optional):
            Transformations to apply to the data. Defaults to None.
        documents (Optional[Sequence[Document]], optional):
            Documents to ingest. Defaults to None.
        readers (Optional[List[ReaderConfig]], optional):
            Reader to use to read the data. Defaults to None.
        vector_store (Optional[BasePydanticVectorStore], optional):
            Vector store to use to store the data. Defaults to None.
        cache (Optional[IngestionCache], optional):
            Cache to use to store the data. Defaults to None.
        docstore (Optional[BaseDocumentStore], optional):
            Document store to use for de-duping with a vector store. Defaults to None.
        docstore_strategy (DocstoreStrategy, optional):
            Document de-dup strategy. Defaults to DocstoreStrategy.UPSERTS.
        disable_cache (bool, optional):
            Disable the cache. Defaults to False.
        base_url (str, optional):
            Base URL for the LlamaCloud API. Defaults to DEFAULT_BASE_URL.
        app_url (str, optional):
            Base URL for the LlamaCloud app. Defaults to DEFAULT_APP_URL.
        api_key (Optional[str], optional):
            LlamaCloud API key. Defaults to None.

    Examples:
        ```python
        from llama_index.core.ingestion import IngestionPipeline
        from llama_index.core.node_parser import SentenceSplitter
        from llama_index.embeddings.openai import OpenAIEmbedding

        pipeline = IngestionPipeline(
            transformations=[
                SentenceSplitter(chunk_size=512, chunk_overlap=20),
                OpenAIEmbedding(),
            ],
        )

        nodes = pipeline.run(documents=documents)
        ```
    """

    name: str = Field(
        default=DEFAULT_PIPELINE_NAME,
        description="Unique name of the ingestion pipeline",
    )
    project_name: str = Field(
        default=DEFAULT_PROJECT_NAME, description="Unique name of the project"
    )

    transformations: List[TransformComponent] = Field(
        description="Transformations to apply to the data"
    )

    documents: Optional[Sequence[Document]] = Field(description="Documents to ingest")
    readers: Optional[List[ReaderConfig]] = Field(
        description="Reader to use to read the data"
    )
    vector_store: Optional[BasePydanticVectorStore] = Field(
        description="Vector store to use to store the data"
    )
    cache: IngestionCache = Field(
        default_factory=IngestionCache,
        description="Cache to use to store the data",
    )
    docstore: Optional[BaseDocumentStore] = Field(
        default=None,
        description="Document store to use for de-duping with a vector store.",
    )
    docstore_strategy: DocstoreStrategy = Field(
        default=DocstoreStrategy.UPSERTS, description="Document de-dup strategy."
    )
    disable_cache: bool = Field(default=False, description="Disable the cache")

    base_url: str = Field(
        default=DEFAULT_BASE_URL, description="Base URL for the LlamaCloud API"
    )
    app_url: str = Field(
        default=DEFAULT_APP_URL, description="Base URL for the LlamaCloud app"
    )
    api_key: Optional[str] = Field(default=None, description="LlamaCloud API key")

    class Config:
        arbitrary_types_allowed = True

    def __init__(
        self,
        name: str = DEFAULT_PIPELINE_NAME,
        project_name: str = DEFAULT_PROJECT_NAME,
        transformations: Optional[List[TransformComponent]] = None,
        readers: Optional[List[ReaderConfig]] = None,
        documents: Optional[Sequence[Document]] = None,
        vector_store: Optional[BasePydanticVectorStore] = None,
        cache: Optional[IngestionCache] = None,
        docstore: Optional[BaseDocumentStore] = None,
        docstore_strategy: DocstoreStrategy = DocstoreStrategy.UPSERTS,
        base_url: Optional[str] = None,
        app_url: Optional[str] = None,
        api_key: Optional[str] = None,
        disable_cache: bool = False,
    ) -> None:
        if transformations is None:
            transformations = self._get_default_transformations()

        api_key = api_key or os.environ.get("LLAMA_CLOUD_API_KEY", None)
        base_url = base_url or os.environ.get("LLAMA_CLOUD_BASE_URL", DEFAULT_BASE_URL)
        app_url = app_url or os.environ.get("LLAMA_CLOUD_APP_URL", DEFAULT_APP_URL)

        super().__init__(
            name=name,
            project_name=project_name,
            transformations=transformations,
            readers=readers,
            documents=documents,
            vector_store=vector_store,
            cache=cache or IngestionCache(),
            docstore=docstore,
            docstore_strategy=docstore_strategy,
            base_url=base_url,
            app_url=app_url,
            api_key=api_key,
            disable_cache=disable_cache,
        )

    @classmethod
    def from_pipeline_name(
        cls,
        name: str,
        project_name: str = DEFAULT_PROJECT_NAME,
        base_url: Optional[str] = None,
        cache: Optional[IngestionCache] = None,
        api_key: Optional[str] = None,
        app_url: Optional[str] = None,
        vector_store: Optional[BasePydanticVectorStore] = None,
        disable_cache: bool = False,
    ) -> "IngestionPipeline":
        """Create an ingestion pipeline from a pipeline name."""
        base_url = base_url or os.environ.get("LLAMA_CLOUD_BASE_URL", DEFAULT_BASE_URL)
        assert base_url is not None

        api_key = api_key or os.environ.get("LLAMA_CLOUD_API_KEY", None)
        app_url = app_url or os.environ.get("LLAMA_CLOUD_APP_URL", DEFAULT_APP_URL)

        client = get_client(api_key=api_key, base_url=base_url)

        projects: List[Project] = client.project.list_projects(
            project_name=project_name
        )
        if len(projects) < 0:
            raise ValueError(f"Project with name {project_name} not found")

        project = projects[0]
        assert project.id is not None, "Project ID should not be None"

        pipelines: List[Pipeline] = client.pipeline.search_pipelines(
            project_name=project_name, pipeline_name=name
        )
        if len(pipelines) < 0:
            raise ValueError(f"Pipeline with name {name} not found")

        pipeline = pipelines[0]

        transformations: List[TransformComponent] = []
        for configured_transformation in pipeline.configured_transformations:
            component_dict = cast(dict, configured_transformation.component)
            transformation_component_type = (
                configured_transformation.configurable_transformation_type
            )
            transformation = deserialize_transformation_component(
                component_dict, transformation_component_type
            )
            transformations.append(transformation)

        documents = []
        readers = []
        for data_source in pipeline.data_sources:
            component_dict = cast(dict, data_source.component)
            source_component_type = data_source.source_type

            if data_source.source_type == ConfigurableDataSourceNames.READER:
                source_component = deserialize_source_component(
                    component_dict, source_component_type
                )
                readers.append(source_component)
            elif data_source.source_type == ConfigurableDataSourceNames.DOCUMENT:
                source_component = deserialize_source_component(
                    component_dict, source_component_type
                )
                if (
                    isinstance(source_component, BaseNode)
                    and source_component.get_content()
                ):
                    documents.append(source_component)

        return cls(
            name=name,
            project_name=project_name,
            transformations=transformations,
            readers=readers,
            documents=documents,
            vector_store=vector_store,
            base_url=base_url,
            cache=cache,
            disable_cache=disable_cache,
            api_key=api_key,
            app_url=app_url,
        )

    def register(
        self,
        verbose: bool = True,
        documents: Optional[List[Document]] = None,
        nodes: Optional[List[BaseNode]] = None,
    ) -> str:
        """Register the pipeline with the LlamaCloud API."""
        client = get_client(api_key=self.api_key, base_url=self.base_url)

        input_nodes = self._prepare_inputs(documents, nodes)

        project = client.project.upsert_project(
            request=ProjectCreate(name=self.project_name)
        )
        assert project.id is not None, "Project ID should not be None"

        # avoid circular import
        from llama_index.core.ingestion.api_utils import get_pipeline_create

        pipeline_create = get_pipeline_create(
            self.name,
            client,
            PipelineType.PLAYGROUND,
            project_name=self.project_name,
            transformations=self.transformations,
            input_nodes=input_nodes,
            readers=self.readers,
        )

        # upload
        pipeline = client.project.upsert_pipeline_for_project(
            project.id,
            request=pipeline_create,
        )
        assert pipeline.id is not None, "Pipeline ID should not be None"

        # Print playground URL if not running remote
        if verbose:
            print(
                f"Pipeline available at: {self.app_url}/project/{project.id}/playground/{pipeline.id}"
            )

        return pipeline.id

    def run_remote(
        self,
        documents: Optional[List[Document]] = None,
        nodes: Optional[List[BaseNode]] = None,
    ) -> str:
        client = get_client(api_key=self.api_key, base_url=self.base_url)

        pipeline_id = self.register(documents=documents, nodes=nodes, verbose=False)

        # start pipeline?
        # the `PipeLineExecution` object should likely generate a URL at some point
        pipeline_execution = client.pipeline.create_playground_job(pipeline_id)

        assert (
            pipeline_execution.id is not None
        ), "Pipeline execution ID should not be None"

        print(
            f"Find your remote results here: {self.app_url}/"
            f"pipelines/execution?id={pipeline_execution.id}"
        )

        return pipeline_execution.id

    def persist(
        self,
        persist_dir: str = "./pipeline_storage",
        fs: Optional[AbstractFileSystem] = None,
        cache_name: str = DEFAULT_CACHE_NAME,
        docstore_name: str = DOCSTORE_FNAME,
    ) -> None:
        """Persist the pipeline to disk."""
        if fs is not None:
            persist_dir = str(persist_dir)  # NOTE: doesn't support Windows here
            docstore_path = concat_dirs(persist_dir, docstore_name)
            cache_path = concat_dirs(persist_dir, cache_name)

        else:
            persist_path = Path(persist_dir)
            docstore_path = str(persist_path / docstore_name)
            cache_path = str(persist_path / cache_name)

        self.cache.persist(cache_path, fs=fs)
        if self.docstore is not None:
            self.docstore.persist(docstore_path, fs=fs)

    def load(
        self,
        persist_dir: str = "./pipeline_storage",
        fs: Optional[AbstractFileSystem] = None,
        cache_name: str = DEFAULT_CACHE_NAME,
        docstore_name: str = DOCSTORE_FNAME,
    ) -> None:
        """Load the pipeline from disk."""
        if fs is not None:
            self.cache = IngestionCache.from_persist_path(
                concat_dirs(persist_dir, cache_name), fs=fs
            )
            self.docstore = SimpleDocumentStore.from_persist_path(
                concat_dirs(persist_dir, docstore_name), fs=fs
            )
        else:
            self.cache = IngestionCache.from_persist_path(
                str(Path(persist_dir) / cache_name)
            )
            self.docstore = SimpleDocumentStore.from_persist_path(
                str(Path(persist_dir) / docstore_name)
            )

    def _get_default_transformations(self) -> List[TransformComponent]:
        return [
            SentenceSplitter(),
            Settings.embed_model,
        ]

    def _prepare_inputs(
        self, documents: Optional[List[Document]], nodes: Optional[List[BaseNode]]
    ) -> List[Document]:
        input_nodes: List[BaseNode] = []
        if documents is not None:
            input_nodes += documents

        if nodes is not None:
            input_nodes += nodes

        if self.documents is not None:
            input_nodes += self.documents

        if self.readers is not None:
            for reader in self.readers:
                input_nodes += reader.read()

        return input_nodes

    def _handle_duplicates(
        self,
        nodes: List[BaseNode],
        store_doc_text: bool = True,
    ) -> List[BaseNode]:
        """Handle docstore duplicates by checking all hashes."""
        assert self.docstore is not None

        existing_hashes = self.docstore.get_all_document_hashes()
        current_hashes = []
        nodes_to_run = []
        for node in nodes:
            if node.hash not in existing_hashes and node.hash not in current_hashes:
                self.docstore.set_document_hash(node.id_, node.hash)
                nodes_to_run.append(node)
                current_hashes.append(node.hash)

        self.docstore.add_documents(nodes_to_run, store_text=store_doc_text)

        return nodes_to_run

    def _handle_upserts(
        self,
        nodes: List[BaseNode],
        store_doc_text: bool = True,
    ) -> List[BaseNode]:
        """Handle docstore upserts by checking hashes and ids."""
        assert self.docstore is not None

        existing_doc_ids_before = set(self.docstore.get_all_document_hashes().values())
        doc_ids_from_nodes = set()
        deduped_nodes_to_run = {}
        for node in nodes:
            ref_doc_id = node.ref_doc_id if node.ref_doc_id else node.id_
            doc_ids_from_nodes.add(ref_doc_id)
            existing_hash = self.docstore.get_document_hash(ref_doc_id)
            if not existing_hash:
                # document doesn't exist, so add it
                self.docstore.set_document_hash(ref_doc_id, node.hash)
                deduped_nodes_to_run[ref_doc_id] = node
            elif existing_hash and existing_hash != node.hash:
                self.docstore.delete_ref_doc(ref_doc_id, raise_error=False)

                if self.vector_store is not None:
                    self.vector_store.delete(ref_doc_id)

                self.docstore.set_document_hash(ref_doc_id, node.hash)

                deduped_nodes_to_run[ref_doc_id] = node
            else:
                continue  # document exists and is unchanged, so skip it

        if self.docstore_strategy == DocstoreStrategy.UPSERTS_AND_DELETE:
            # Identify missing docs and delete them from docstore and vector store
            doc_ids_to_delete = existing_doc_ids_before - doc_ids_from_nodes
            for ref_doc_id in doc_ids_to_delete:
                self.docstore.delete_document(ref_doc_id)

                if self.vector_store is not None:
                    self.vector_store.delete(ref_doc_id)

        nodes_to_run = list(deduped_nodes_to_run.values())
        self.docstore.add_documents(nodes_to_run, store_text=store_doc_text)

        return nodes_to_run

    @staticmethod
    def _node_batcher(
        num_batches: int, nodes: Union[List[BaseNode], List[Document]]
    ) -> Generator[Union[List[BaseNode], List[Document]], Any, Any]:
        """Yield successive n-sized chunks from lst."""
        batch_size = max(1, int(len(nodes) / num_batches))
        for i in range(0, len(nodes), batch_size):
            yield nodes[i : i + batch_size]

    def run(
        self,
        show_progress: bool = False,
        documents: Optional[List[Document]] = None,
        nodes: Optional[List[BaseNode]] = None,
        cache_collection: Optional[str] = None,
        in_place: bool = True,
        store_doc_text: bool = True,
        num_workers: Optional[int] = None,
        **kwargs: Any,
    ) -> Sequence[BaseNode]:
        """
        Run a series of transformations on a set of nodes.

        If a vector store is provided, nodes with embeddings will be added to the vector store.

        If a vector store + docstore are provided, the docstore will be used to de-duplicate documents.

        Args:
            show_progress (bool, optional): Shows execution progress bar(s). Defaults to False.
            documents (Optional[List[Document]], optional): Set of documents to be transformed. Defaults to None.
            nodes (Optional[List[BaseNode]], optional): Set of nodes to be transformed. Defaults to None.
            cache_collection (Optional[str], optional): Cache for transformations. Defaults to None.
            in_place (bool, optional): Whether transformations creates a new list for transformed nodes or modifies the
                array passed to `run_transformations`. Defaults to True.
            num_workers (Optional[int], optional): The number of parallel processes to use.
                If set to None, then sequential compute is used. Defaults to None.

        Returns:
            Sequence[BaseNode]: The set of transformed Nodes/Documents
        """
        input_nodes = self._prepare_inputs(documents, nodes)

        # check if we need to dedup
        if self.docstore is not None and self.vector_store is not None:
            if self.docstore_strategy in (
                DocstoreStrategy.UPSERTS,
                DocstoreStrategy.UPSERTS_AND_DELETE,
            ):
                nodes_to_run = self._handle_upserts(
                    input_nodes, store_doc_text=store_doc_text
                )
            elif self.docstore_strategy == DocstoreStrategy.DUPLICATES_ONLY:
                nodes_to_run = self._handle_duplicates(
                    input_nodes, store_doc_text=store_doc_text
                )
            else:
                raise ValueError(f"Invalid docstore strategy: {self.docstore_strategy}")
        elif self.docstore is not None and self.vector_store is None:
            if self.docstore_strategy == DocstoreStrategy.UPSERTS:
                print(
                    "Docstore strategy set to upserts, but no vector store. "
                    "Switching to duplicates_only strategy."
                )
                self.docstore_strategy = DocstoreStrategy.DUPLICATES_ONLY
            elif self.docstore_strategy == DocstoreStrategy.UPSERTS_AND_DELETE:
                print(
                    "Docstore strategy set to upserts and delete, but no vector store. "
                    "Switching to duplicates_only strategy."
                )
                self.docstore_strategy = DocstoreStrategy.DUPLICATES_ONLY
            nodes_to_run = self._handle_duplicates(
                input_nodes, store_doc_text=store_doc_text
            )

        else:
            nodes_to_run = input_nodes

        if num_workers and num_workers > 1:
            if num_workers > multiprocessing.cpu_count():
                warnings.warn(
                    "Specified num_workers exceed number of CPUs in the system. "
                    "Setting `num_workers` down to the maximum CPU count."
                )

            with multiprocessing.get_context("spawn").Pool(num_workers) as p:
                node_batches = self._node_batcher(
                    num_batches=num_workers, nodes=nodes_to_run
                )
                nodes_parallel = p.starmap(
                    run_transformations,
                    zip(
                        node_batches,
                        repeat(self.transformations),
                        repeat(in_place),
                        repeat(self.cache if not self.disable_cache else None),
                        repeat(cache_collection),
                    ),
                )
                nodes = reduce(lambda x, y: x + y, nodes_parallel, [])
        else:
            nodes = run_transformations(
                nodes_to_run,
                self.transformations,
                show_progress=show_progress,
                cache=self.cache if not self.disable_cache else None,
                cache_collection=cache_collection,
                in_place=in_place,
                **kwargs,
            )

        if self.vector_store is not None:
            self.vector_store.add([n for n in nodes if n.embedding is not None])

        return nodes

    # ------ async methods ------

    async def _ahandle_duplicates(
        self,
        nodes: List[BaseNode],
        store_doc_text: bool = True,
    ) -> List[BaseNode]:
        """Handle docstore duplicates by checking all hashes."""
        assert self.docstore is not None

        existing_hashes = await self.docstore.aget_all_document_hashes()
        current_hashes = []
        nodes_to_run = []
        for node in nodes:
            if node.hash not in existing_hashes and node.hash not in current_hashes:
                await self.docstore.aset_document_hash(node.id_, node.hash)
                nodes_to_run.append(node)
                current_hashes.append(node.hash)

        await self.docstore.async_add_documents(nodes_to_run, store_text=store_doc_text)

        return nodes_to_run

    async def _ahandle_upserts(
        self,
        nodes: List[BaseNode],
        store_doc_text: bool = True,
    ) -> List[BaseNode]:
        """Handle docstore upserts by checking hashes and ids."""
        assert self.docstore is not None

        existing_doc_ids_before = set(
            (await self.docstore.aget_all_document_hashes()).values()
        )
        doc_ids_from_nodes = set()
        deduped_nodes_to_run = {}
        for node in nodes:
            ref_doc_id = node.ref_doc_id if node.ref_doc_id else node.id_
            doc_ids_from_nodes.add(ref_doc_id)
            existing_hash = await self.docstore.aget_document_hash(ref_doc_id)
            if not existing_hash:
                # document doesn't exist, so add it
                await self.docstore.aset_document_hash(ref_doc_id, node.hash)
                deduped_nodes_to_run[ref_doc_id] = node
            elif existing_hash and existing_hash != node.hash:
                await self.docstore.adelete_ref_doc(ref_doc_id, raise_error=False)

                if self.vector_store is not None:
                    await self.vector_store.adelete(ref_doc_id)

                await self.docstore.aset_document_hash(ref_doc_id, node.hash)

                deduped_nodes_to_run[ref_doc_id] = node
            else:
                continue  # document exists and is unchanged, so skip it

        if self.docstore_strategy == DocstoreStrategy.UPSERTS_AND_DELETE:
            # Identify missing docs and delete them from docstore and vector store
            doc_ids_to_delete = existing_doc_ids_before - doc_ids_from_nodes
            for ref_doc_id in doc_ids_to_delete:
                await self.docstore.adelete_document(ref_doc_id)

                if self.vector_store is not None:
                    await self.vector_store.adelete(ref_doc_id)

        nodes_to_run = list(deduped_nodes_to_run.values())
        await self.docstore.async_add_documents(nodes_to_run, store_text=store_doc_text)

        return nodes_to_run

    async def arun(
        self,
        show_progress: bool = False,
        documents: Optional[List[Document]] = None,
        nodes: Optional[List[BaseNode]] = None,
        cache_collection: Optional[str] = None,
        in_place: bool = True,
        store_doc_text: bool = True,
        num_workers: Optional[int] = None,
        **kwargs: Any,
    ) -> Sequence[BaseNode]:
        """
        Run a series of transformations on a set of nodes.

        If a vector store is provided, nodes with embeddings will be added to the vector store.

        If a vector store + docstore are provided, the docstore will be used to de-duplicate documents.

        Args:
            show_progress (bool, optional): Shows execution progress bar(s). Defaults to False.
            documents (Optional[List[Document]], optional): Set of documents to be transformed. Defaults to None.
            nodes (Optional[List[BaseNode]], optional): Set of nodes to be transformed. Defaults to None.
            cache_collection (Optional[str], optional): Cache for transformations. Defaults to None.
            in_place (bool, optional): Whether transformations creates a new list for transformed nodes or modifies the
                array passed to `run_transformations`. Defaults to True.
            num_workers (Optional[int], optional): The number of parallel processes to use.
                If set to None, then sequential compute is used. Defaults to None.

        Returns:
            Sequence[BaseNode]: The set of transformed Nodes/Documents
        """
        input_nodes = self._prepare_inputs(documents, nodes)

        # check if we need to dedup
        if self.docstore is not None and self.vector_store is not None:
            if self.docstore_strategy in (
                DocstoreStrategy.UPSERTS,
                DocstoreStrategy.UPSERTS_AND_DELETE,
            ):
                nodes_to_run = await self._ahandle_upserts(
                    input_nodes, store_doc_text=store_doc_text
                )
            elif self.docstore_strategy == DocstoreStrategy.DUPLICATES_ONLY:
                nodes_to_run = await self._ahandle_duplicates(
                    input_nodes, store_doc_text=store_doc_text
                )
            else:
                raise ValueError(f"Invalid docstore strategy: {self.docstore_strategy}")
        elif self.docstore is not None and self.vector_store is None:
            if self.docstore_strategy == DocstoreStrategy.UPSERTS:
                print(
                    "Docstore strategy set to upserts, but no vector store. "
                    "Switching to duplicates_only strategy."
                )
                self.docstore_strategy = DocstoreStrategy.DUPLICATES_ONLY
            elif self.docstore_strategy == DocstoreStrategy.UPSERTS_AND_DELETE:
                print(
                    "Docstore strategy set to upserts and delete, but no vector store. "
                    "Switching to duplicates_only strategy."
                )
                self.docstore_strategy = DocstoreStrategy.DUPLICATES_ONLY
            nodes_to_run = await self._ahandle_duplicates(
                input_nodes, store_doc_text=store_doc_text
            )

        else:
            nodes_to_run = input_nodes

        if num_workers and num_workers > 1:
            if num_workers > multiprocessing.cpu_count():
                warnings.warn(
                    "Specified num_workers exceed number of CPUs in the system. "
                    "Setting `num_workers` down to the maximum CPU count."
                )

            loop = asyncio.get_event_loop()
            with ProcessPoolExecutor(max_workers=num_workers) as p:
                node_batches = self._node_batcher(
                    num_batches=num_workers, nodes=nodes_to_run
                )
                tasks = [
                    loop.run_in_executor(
                        p,
                        partial(
                            arun_transformations_wrapper,
                            transformations=self.transformations,
                            in_place=in_place,
                            cache=self.cache if not self.disable_cache else None,
                            cache_collection=cache_collection,
                        ),
                        batch,
                    )
                    for batch in node_batches
                ]
                result: List[List[BaseNode]] = await asyncio.gather(*tasks)
                nodes = reduce(lambda x, y: x + y, result, [])
        else:
            nodes = await arun_transformations(
                nodes_to_run,
                self.transformations,
                show_progress=show_progress,
                cache=self.cache if not self.disable_cache else None,
                cache_collection=cache_collection,
                in_place=in_place,
                **kwargs,
            )

        if self.vector_store is not None:
            await self.vector_store.async_add(
                [n for n in nodes if n.embedding is not None]
            )

        return nodes

from_pipeline_name classmethod #

from_pipeline_name(name: str, project_name: str = DEFAULT_PROJECT_NAME, base_url: Optional[str] = None, cache: Optional[IngestionCache] = None, api_key: Optional[str] = None, app_url: Optional[str] = None, vector_store: Optional[BasePydanticVectorStore] = None, disable_cache: bool = False) -> IngestionPipeline

Create an ingestion pipeline from a pipeline name.

Source code in llama-index-core/llama_index/core/ingestion/pipeline.py
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
@classmethod
def from_pipeline_name(
    cls,
    name: str,
    project_name: str = DEFAULT_PROJECT_NAME,
    base_url: Optional[str] = None,
    cache: Optional[IngestionCache] = None,
    api_key: Optional[str] = None,
    app_url: Optional[str] = None,
    vector_store: Optional[BasePydanticVectorStore] = None,
    disable_cache: bool = False,
) -> "IngestionPipeline":
    """Create an ingestion pipeline from a pipeline name."""
    base_url = base_url or os.environ.get("LLAMA_CLOUD_BASE_URL", DEFAULT_BASE_URL)
    assert base_url is not None

    api_key = api_key or os.environ.get("LLAMA_CLOUD_API_KEY", None)
    app_url = app_url or os.environ.get("LLAMA_CLOUD_APP_URL", DEFAULT_APP_URL)

    client = get_client(api_key=api_key, base_url=base_url)

    projects: List[Project] = client.project.list_projects(
        project_name=project_name
    )
    if len(projects) < 0:
        raise ValueError(f"Project with name {project_name} not found")

    project = projects[0]
    assert project.id is not None, "Project ID should not be None"

    pipelines: List[Pipeline] = client.pipeline.search_pipelines(
        project_name=project_name, pipeline_name=name
    )
    if len(pipelines) < 0:
        raise ValueError(f"Pipeline with name {name} not found")

    pipeline = pipelines[0]

    transformations: List[TransformComponent] = []
    for configured_transformation in pipeline.configured_transformations:
        component_dict = cast(dict, configured_transformation.component)
        transformation_component_type = (
            configured_transformation.configurable_transformation_type
        )
        transformation = deserialize_transformation_component(
            component_dict, transformation_component_type
        )
        transformations.append(transformation)

    documents = []
    readers = []
    for data_source in pipeline.data_sources:
        component_dict = cast(dict, data_source.component)
        source_component_type = data_source.source_type

        if data_source.source_type == ConfigurableDataSourceNames.READER:
            source_component = deserialize_source_component(
                component_dict, source_component_type
            )
            readers.append(source_component)
        elif data_source.source_type == ConfigurableDataSourceNames.DOCUMENT:
            source_component = deserialize_source_component(
                component_dict, source_component_type
            )
            if (
                isinstance(source_component, BaseNode)
                and source_component.get_content()
            ):
                documents.append(source_component)

    return cls(
        name=name,
        project_name=project_name,
        transformations=transformations,
        readers=readers,
        documents=documents,
        vector_store=vector_store,
        base_url=base_url,
        cache=cache,
        disable_cache=disable_cache,
        api_key=api_key,
        app_url=app_url,
    )

register #

register(verbose: bool = True, documents: Optional[List[Document]] = None, nodes: Optional[List[BaseNode]] = None) -> str

Register the pipeline with the LlamaCloud API.

Source code in llama-index-core/llama_index/core/ingestion/pipeline.py
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
def register(
    self,
    verbose: bool = True,
    documents: Optional[List[Document]] = None,
    nodes: Optional[List[BaseNode]] = None,
) -> str:
    """Register the pipeline with the LlamaCloud API."""
    client = get_client(api_key=self.api_key, base_url=self.base_url)

    input_nodes = self._prepare_inputs(documents, nodes)

    project = client.project.upsert_project(
        request=ProjectCreate(name=self.project_name)
    )
    assert project.id is not None, "Project ID should not be None"

    # avoid circular import
    from llama_index.core.ingestion.api_utils import get_pipeline_create

    pipeline_create = get_pipeline_create(
        self.name,
        client,
        PipelineType.PLAYGROUND,
        project_name=self.project_name,
        transformations=self.transformations,
        input_nodes=input_nodes,
        readers=self.readers,
    )

    # upload
    pipeline = client.project.upsert_pipeline_for_project(
        project.id,
        request=pipeline_create,
    )
    assert pipeline.id is not None, "Pipeline ID should not be None"

    # Print playground URL if not running remote
    if verbose:
        print(
            f"Pipeline available at: {self.app_url}/project/{project.id}/playground/{pipeline.id}"
        )

    return pipeline.id

persist #

persist(persist_dir: str = './pipeline_storage', fs: Optional[AbstractFileSystem] = None, cache_name: str = DEFAULT_CACHE_NAME, docstore_name: str = DOCSTORE_FNAME) -> None

Persist the pipeline to disk.

Source code in llama-index-core/llama_index/core/ingestion/pipeline.py
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
def persist(
    self,
    persist_dir: str = "./pipeline_storage",
    fs: Optional[AbstractFileSystem] = None,
    cache_name: str = DEFAULT_CACHE_NAME,
    docstore_name: str = DOCSTORE_FNAME,
) -> None:
    """Persist the pipeline to disk."""
    if fs is not None:
        persist_dir = str(persist_dir)  # NOTE: doesn't support Windows here
        docstore_path = concat_dirs(persist_dir, docstore_name)
        cache_path = concat_dirs(persist_dir, cache_name)

    else:
        persist_path = Path(persist_dir)
        docstore_path = str(persist_path / docstore_name)
        cache_path = str(persist_path / cache_name)

    self.cache.persist(cache_path, fs=fs)
    if self.docstore is not None:
        self.docstore.persist(docstore_path, fs=fs)

load #

load(persist_dir: str = './pipeline_storage', fs: Optional[AbstractFileSystem] = None, cache_name: str = DEFAULT_CACHE_NAME, docstore_name: str = DOCSTORE_FNAME) -> None

Load the pipeline from disk.

Source code in llama-index-core/llama_index/core/ingestion/pipeline.py
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
def load(
    self,
    persist_dir: str = "./pipeline_storage",
    fs: Optional[AbstractFileSystem] = None,
    cache_name: str = DEFAULT_CACHE_NAME,
    docstore_name: str = DOCSTORE_FNAME,
) -> None:
    """Load the pipeline from disk."""
    if fs is not None:
        self.cache = IngestionCache.from_persist_path(
            concat_dirs(persist_dir, cache_name), fs=fs
        )
        self.docstore = SimpleDocumentStore.from_persist_path(
            concat_dirs(persist_dir, docstore_name), fs=fs
        )
    else:
        self.cache = IngestionCache.from_persist_path(
            str(Path(persist_dir) / cache_name)
        )
        self.docstore = SimpleDocumentStore.from_persist_path(
            str(Path(persist_dir) / docstore_name)
        )

run #

run(show_progress: bool = False, documents: Optional[List[Document]] = None, nodes: Optional[List[BaseNode]] = None, cache_collection: Optional[str] = None, in_place: bool = True, store_doc_text: bool = True, num_workers: Optional[int] = None, **kwargs: Any) -> Sequence[BaseNode]

Run a series of transformations on a set of nodes.

If a vector store is provided, nodes with embeddings will be added to the vector store.

If a vector store + docstore are provided, the docstore will be used to de-duplicate documents.

Parameters:

Name Type Description Default
show_progress bool

Shows execution progress bar(s). Defaults to False.

False
documents Optional[List[Document]]

Set of documents to be transformed. Defaults to None.

None
nodes Optional[List[BaseNode]]

Set of nodes to be transformed. Defaults to None.

None
cache_collection Optional[str]

Cache for transformations. Defaults to None.

None
in_place bool

Whether transformations creates a new list for transformed nodes or modifies the array passed to run_transformations. Defaults to True.

True
num_workers Optional[int]

The number of parallel processes to use. If set to None, then sequential compute is used. Defaults to None.

None

Returns:

Type Description
Sequence[BaseNode]

Sequence[BaseNode]: The set of transformed Nodes/Documents

Source code in llama-index-core/llama_index/core/ingestion/pipeline.py
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
def run(
    self,
    show_progress: bool = False,
    documents: Optional[List[Document]] = None,
    nodes: Optional[List[BaseNode]] = None,
    cache_collection: Optional[str] = None,
    in_place: bool = True,
    store_doc_text: bool = True,
    num_workers: Optional[int] = None,
    **kwargs: Any,
) -> Sequence[BaseNode]:
    """
    Run a series of transformations on a set of nodes.

    If a vector store is provided, nodes with embeddings will be added to the vector store.

    If a vector store + docstore are provided, the docstore will be used to de-duplicate documents.

    Args:
        show_progress (bool, optional): Shows execution progress bar(s). Defaults to False.
        documents (Optional[List[Document]], optional): Set of documents to be transformed. Defaults to None.
        nodes (Optional[List[BaseNode]], optional): Set of nodes to be transformed. Defaults to None.
        cache_collection (Optional[str], optional): Cache for transformations. Defaults to None.
        in_place (bool, optional): Whether transformations creates a new list for transformed nodes or modifies the
            array passed to `run_transformations`. Defaults to True.
        num_workers (Optional[int], optional): The number of parallel processes to use.
            If set to None, then sequential compute is used. Defaults to None.

    Returns:
        Sequence[BaseNode]: The set of transformed Nodes/Documents
    """
    input_nodes = self._prepare_inputs(documents, nodes)

    # check if we need to dedup
    if self.docstore is not None and self.vector_store is not None:
        if self.docstore_strategy in (
            DocstoreStrategy.UPSERTS,
            DocstoreStrategy.UPSERTS_AND_DELETE,
        ):
            nodes_to_run = self._handle_upserts(
                input_nodes, store_doc_text=store_doc_text
            )
        elif self.docstore_strategy == DocstoreStrategy.DUPLICATES_ONLY:
            nodes_to_run = self._handle_duplicates(
                input_nodes, store_doc_text=store_doc_text
            )
        else:
            raise ValueError(f"Invalid docstore strategy: {self.docstore_strategy}")
    elif self.docstore is not None and self.vector_store is None:
        if self.docstore_strategy == DocstoreStrategy.UPSERTS:
            print(
                "Docstore strategy set to upserts, but no vector store. "
                "Switching to duplicates_only strategy."
            )
            self.docstore_strategy = DocstoreStrategy.DUPLICATES_ONLY
        elif self.docstore_strategy == DocstoreStrategy.UPSERTS_AND_DELETE:
            print(
                "Docstore strategy set to upserts and delete, but no vector store. "
                "Switching to duplicates_only strategy."
            )
            self.docstore_strategy = DocstoreStrategy.DUPLICATES_ONLY
        nodes_to_run = self._handle_duplicates(
            input_nodes, store_doc_text=store_doc_text
        )

    else:
        nodes_to_run = input_nodes

    if num_workers and num_workers > 1:
        if num_workers > multiprocessing.cpu_count():
            warnings.warn(
                "Specified num_workers exceed number of CPUs in the system. "
                "Setting `num_workers` down to the maximum CPU count."
            )

        with multiprocessing.get_context("spawn").Pool(num_workers) as p:
            node_batches = self._node_batcher(
                num_batches=num_workers, nodes=nodes_to_run
            )
            nodes_parallel = p.starmap(
                run_transformations,
                zip(
                    node_batches,
                    repeat(self.transformations),
                    repeat(in_place),
                    repeat(self.cache if not self.disable_cache else None),
                    repeat(cache_collection),
                ),
            )
            nodes = reduce(lambda x, y: x + y, nodes_parallel, [])
    else:
        nodes = run_transformations(
            nodes_to_run,
            self.transformations,
            show_progress=show_progress,
            cache=self.cache if not self.disable_cache else None,
            cache_collection=cache_collection,
            in_place=in_place,
            **kwargs,
        )

    if self.vector_store is not None:
        self.vector_store.add([n for n in nodes if n.embedding is not None])

    return nodes

arun async #

arun(show_progress: bool = False, documents: Optional[List[Document]] = None, nodes: Optional[List[BaseNode]] = None, cache_collection: Optional[str] = None, in_place: bool = True, store_doc_text: bool = True, num_workers: Optional[int] = None, **kwargs: Any) -> Sequence[BaseNode]

Run a series of transformations on a set of nodes.

If a vector store is provided, nodes with embeddings will be added to the vector store.

If a vector store + docstore are provided, the docstore will be used to de-duplicate documents.

Parameters:

Name Type Description Default
show_progress bool

Shows execution progress bar(s). Defaults to False.

False
documents Optional[List[Document]]

Set of documents to be transformed. Defaults to None.

None
nodes Optional[List[BaseNode]]

Set of nodes to be transformed. Defaults to None.

None
cache_collection Optional[str]

Cache for transformations. Defaults to None.

None
in_place bool

Whether transformations creates a new list for transformed nodes or modifies the array passed to run_transformations. Defaults to True.

True
num_workers Optional[int]

The number of parallel processes to use. If set to None, then sequential compute is used. Defaults to None.

None

Returns:

Type Description
Sequence[BaseNode]

Sequence[BaseNode]: The set of transformed Nodes/Documents

Source code in llama-index-core/llama_index/core/ingestion/pipeline.py
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
async def arun(
    self,
    show_progress: bool = False,
    documents: Optional[List[Document]] = None,
    nodes: Optional[List[BaseNode]] = None,
    cache_collection: Optional[str] = None,
    in_place: bool = True,
    store_doc_text: bool = True,
    num_workers: Optional[int] = None,
    **kwargs: Any,
) -> Sequence[BaseNode]:
    """
    Run a series of transformations on a set of nodes.

    If a vector store is provided, nodes with embeddings will be added to the vector store.

    If a vector store + docstore are provided, the docstore will be used to de-duplicate documents.

    Args:
        show_progress (bool, optional): Shows execution progress bar(s). Defaults to False.
        documents (Optional[List[Document]], optional): Set of documents to be transformed. Defaults to None.
        nodes (Optional[List[BaseNode]], optional): Set of nodes to be transformed. Defaults to None.
        cache_collection (Optional[str], optional): Cache for transformations. Defaults to None.
        in_place (bool, optional): Whether transformations creates a new list for transformed nodes or modifies the
            array passed to `run_transformations`. Defaults to True.
        num_workers (Optional[int], optional): The number of parallel processes to use.
            If set to None, then sequential compute is used. Defaults to None.

    Returns:
        Sequence[BaseNode]: The set of transformed Nodes/Documents
    """
    input_nodes = self._prepare_inputs(documents, nodes)

    # check if we need to dedup
    if self.docstore is not None and self.vector_store is not None:
        if self.docstore_strategy in (
            DocstoreStrategy.UPSERTS,
            DocstoreStrategy.UPSERTS_AND_DELETE,
        ):
            nodes_to_run = await self._ahandle_upserts(
                input_nodes, store_doc_text=store_doc_text
            )
        elif self.docstore_strategy == DocstoreStrategy.DUPLICATES_ONLY:
            nodes_to_run = await self._ahandle_duplicates(
                input_nodes, store_doc_text=store_doc_text
            )
        else:
            raise ValueError(f"Invalid docstore strategy: {self.docstore_strategy}")
    elif self.docstore is not None and self.vector_store is None:
        if self.docstore_strategy == DocstoreStrategy.UPSERTS:
            print(
                "Docstore strategy set to upserts, but no vector store. "
                "Switching to duplicates_only strategy."
            )
            self.docstore_strategy = DocstoreStrategy.DUPLICATES_ONLY
        elif self.docstore_strategy == DocstoreStrategy.UPSERTS_AND_DELETE:
            print(
                "Docstore strategy set to upserts and delete, but no vector store. "
                "Switching to duplicates_only strategy."
            )
            self.docstore_strategy = DocstoreStrategy.DUPLICATES_ONLY
        nodes_to_run = await self._ahandle_duplicates(
            input_nodes, store_doc_text=store_doc_text
        )

    else:
        nodes_to_run = input_nodes

    if num_workers and num_workers > 1:
        if num_workers > multiprocessing.cpu_count():
            warnings.warn(
                "Specified num_workers exceed number of CPUs in the system. "
                "Setting `num_workers` down to the maximum CPU count."
            )

        loop = asyncio.get_event_loop()
        with ProcessPoolExecutor(max_workers=num_workers) as p:
            node_batches = self._node_batcher(
                num_batches=num_workers, nodes=nodes_to_run
            )
            tasks = [
                loop.run_in_executor(
                    p,
                    partial(
                        arun_transformations_wrapper,
                        transformations=self.transformations,
                        in_place=in_place,
                        cache=self.cache if not self.disable_cache else None,
                        cache_collection=cache_collection,
                    ),
                    batch,
                )
                for batch in node_batches
            ]
            result: List[List[BaseNode]] = await asyncio.gather(*tasks)
            nodes = reduce(lambda x, y: x + y, result, [])
    else:
        nodes = await arun_transformations(
            nodes_to_run,
            self.transformations,
            show_progress=show_progress,
            cache=self.cache if not self.disable_cache else None,
            cache_collection=cache_collection,
            in_place=in_place,
            **kwargs,
        )

    if self.vector_store is not None:
        await self.vector_store.async_add(
            [n for n in nodes if n.embedding is not None]
        )

    return nodes

DocstoreStrategy #

Bases: str, Enum

Document de-duplication strategy.

Attributes:

Name Type Description
UPSERTS

('upserts') Use upserts to handle duplicates.

DUPLICATES_ONLY

('duplicates_only') Only handle duplicates.

UPSERTS_AND_DELETE

('upserts_and_delete') Use upserts and delete to handle duplicates.

Source code in llama-index-core/llama_index/core/ingestion/pipeline.py
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
class DocstoreStrategy(str, Enum):
    """Document de-duplication strategy.

    Attributes:
        UPSERTS:
            ('upserts') Use upserts to handle duplicates.
        DUPLICATES_ONLY:
            ('duplicates_only') Only handle duplicates.
        UPSERTS_AND_DELETE:
            ('upserts_and_delete') Use upserts and delete to handle duplicates.
    """

    UPSERTS = "upserts"
    DUPLICATES_ONLY = "duplicates_only"
    UPSERTS_AND_DELETE = "upserts_and_delete"