Skip to content

Tree

LlamaIndex data structures.

TreeIndex #

Bases: BaseIndex[IndexGraph]

Tree Index.

The tree index is a tree-structured index, where each node is a summary of the children nodes. During index construction, the tree is constructed in a bottoms-up fashion until we end up with a set of root_nodes.

There are a few different options during query time (see :ref:Ref-Query). The main option is to traverse down the tree from the root nodes. A secondary answer is to directly synthesize the answer from the root nodes.

Parameters:

Name Type Description Default
summary_template Optional[BasePromptTemplate]

A Summarization Prompt (see :ref:Prompt-Templates).

None
insert_prompt Optional[BasePromptTemplate]

An Tree Insertion Prompt (see :ref:Prompt-Templates).

None
num_children int

The number of children each node should have.

10
build_tree bool

Whether to build the tree during index construction.

True
show_progress bool

Whether to show progress bars. Defaults to False.

False
Source code in llama-index-core/llama_index/core/indices/tree/base.py
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
class TreeIndex(BaseIndex[IndexGraph]):
    """Tree Index.

    The tree index is a tree-structured index, where each node is a summary of
    the children nodes. During index construction, the tree is constructed
    in a bottoms-up fashion until we end up with a set of root_nodes.

    There are a few different options during query time (see :ref:`Ref-Query`).
    The main option is to traverse down the tree from the root nodes.
    A secondary answer is to directly synthesize the answer from the root nodes.

    Args:
        summary_template (Optional[BasePromptTemplate]): A Summarization Prompt
            (see :ref:`Prompt-Templates`).
        insert_prompt (Optional[BasePromptTemplate]): An Tree Insertion Prompt
            (see :ref:`Prompt-Templates`).
        num_children (int): The number of children each node should have.
        build_tree (bool): Whether to build the tree during index construction.
        show_progress (bool): Whether to show progress bars. Defaults to False.

    """

    index_struct_cls = IndexGraph

    def __init__(
        self,
        nodes: Optional[Sequence[BaseNode]] = None,
        objects: Optional[Sequence[IndexNode]] = None,
        index_struct: Optional[IndexGraph] = None,
        llm: Optional[LLM] = None,
        summary_template: Optional[BasePromptTemplate] = None,
        insert_prompt: Optional[BasePromptTemplate] = None,
        num_children: int = 10,
        build_tree: bool = True,
        use_async: bool = False,
        show_progress: bool = False,
        # deprecated
        service_context: Optional[ServiceContext] = None,
        **kwargs: Any,
    ) -> None:
        """Initialize params."""
        # need to set parameters before building index in base class.
        self.num_children = num_children
        self.summary_template = summary_template or DEFAULT_SUMMARY_PROMPT
        self.insert_prompt: BasePromptTemplate = insert_prompt or DEFAULT_INSERT_PROMPT
        self.build_tree = build_tree
        self._use_async = use_async
        self._llm = llm or llm_from_settings_or_context(Settings, service_context)
        super().__init__(
            nodes=nodes,
            index_struct=index_struct,
            service_context=service_context,
            show_progress=show_progress,
            objects=objects,
            **kwargs,
        )

    def as_retriever(
        self,
        retriever_mode: Union[str, TreeRetrieverMode] = TreeRetrieverMode.SELECT_LEAF,
        embed_model: Optional[BaseEmbedding] = None,
        **kwargs: Any,
    ) -> BaseRetriever:
        # NOTE: lazy import
        from llama_index.core.indices.tree.all_leaf_retriever import (
            TreeAllLeafRetriever,
        )
        from llama_index.core.indices.tree.select_leaf_embedding_retriever import (
            TreeSelectLeafEmbeddingRetriever,
        )
        from llama_index.core.indices.tree.select_leaf_retriever import (
            TreeSelectLeafRetriever,
        )
        from llama_index.core.indices.tree.tree_root_retriever import (
            TreeRootRetriever,
        )

        self._validate_build_tree_required(TreeRetrieverMode(retriever_mode))

        if retriever_mode == TreeRetrieverMode.SELECT_LEAF:
            return TreeSelectLeafRetriever(self, object_map=self._object_map, **kwargs)
        elif retriever_mode == TreeRetrieverMode.SELECT_LEAF_EMBEDDING:
            embed_model = embed_model or embed_model_from_settings_or_context(
                Settings, self._service_context
            )
            return TreeSelectLeafEmbeddingRetriever(
                self, embed_model=embed_model, object_map=self._object_map, **kwargs
            )
        elif retriever_mode == TreeRetrieverMode.ROOT:
            return TreeRootRetriever(self, object_map=self._object_map, **kwargs)
        elif retriever_mode == TreeRetrieverMode.ALL_LEAF:
            return TreeAllLeafRetriever(self, object_map=self._object_map, **kwargs)
        else:
            raise ValueError(f"Unknown retriever mode: {retriever_mode}")

    def _validate_build_tree_required(self, retriever_mode: TreeRetrieverMode) -> None:
        """Check if index supports modes that require trees."""
        if retriever_mode in REQUIRE_TREE_MODES and not self.build_tree:
            raise ValueError(
                "Index was constructed without building trees, "
                f"but retriever mode {retriever_mode} requires trees."
            )

    def _build_index_from_nodes(self, nodes: Sequence[BaseNode]) -> IndexGraph:
        """Build the index from nodes."""
        index_builder = GPTTreeIndexBuilder(
            self.num_children,
            self.summary_template,
            service_context=self.service_context,
            llm=self._llm,
            use_async=self._use_async,
            show_progress=self._show_progress,
            docstore=self._docstore,
        )
        return index_builder.build_from_nodes(nodes, build_tree=self.build_tree)

    def _insert(self, nodes: Sequence[BaseNode], **insert_kwargs: Any) -> None:
        """Insert a document."""
        # TODO: allow to customize insert prompt
        inserter = TreeIndexInserter(
            self.index_struct,
            service_context=self.service_context,
            llm=self._llm,
            num_children=self.num_children,
            insert_prompt=self.insert_prompt,
            summary_prompt=self.summary_template,
            docstore=self._docstore,
        )
        inserter.insert(nodes)

    def _delete_node(self, node_id: str, **delete_kwargs: Any) -> None:
        """Delete a node."""
        raise NotImplementedError("Delete not implemented for tree index.")

    @property
    def ref_doc_info(self) -> Dict[str, RefDocInfo]:
        """Retrieve a dict mapping of ingested documents and their nodes+metadata."""
        node_doc_ids = list(self.index_struct.all_nodes.values())
        nodes = self.docstore.get_nodes(node_doc_ids)

        all_ref_doc_info = {}
        for node in nodes:
            ref_node = node.source_node
            if not ref_node:
                continue

            ref_doc_info = self.docstore.get_ref_doc_info(ref_node.node_id)
            if not ref_doc_info:
                continue

            all_ref_doc_info[ref_node.node_id] = ref_doc_info
        return all_ref_doc_info

ref_doc_info property #

ref_doc_info: Dict[str, RefDocInfo]

Retrieve a dict mapping of ingested documents and their nodes+metadata.