Skip to content

Knowledge graph

LlamaIndex data structures.

KnowledgeGraphIndex #

Bases: BaseIndex[KG]

Knowledge Graph Index.

Build a KG by extracting triplets, and leveraging the KG during query-time.

Parameters:

Name Type Description Default
kg_triple_extract_template BasePromptTemplate

The prompt to use for extracting triplets.

None
max_triplets_per_chunk int

The maximum number of triplets to extract.

10
service_context Optional[ServiceContext]

The service context to use.

None
storage_context Optional[StorageContext]

The storage context to use.

None
graph_store Optional[GraphStore]

The graph store to use.

required
show_progress bool

Whether to show tqdm progress bars. Defaults to False.

False
include_embeddings bool

Whether to include embeddings in the index. Defaults to False.

False
max_object_length int

The maximum length of the object in a triplet. Defaults to 128.

128
kg_triplet_extract_fn Optional[Callable]

The function to use for extracting triplets. Defaults to None.

None
Source code in llama-index-core/llama_index/core/indices/knowledge_graph/base.py
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
class KnowledgeGraphIndex(BaseIndex[KG]):
    """Knowledge Graph Index.

    Build a KG by extracting triplets, and leveraging the KG during query-time.

    Args:
        kg_triple_extract_template (BasePromptTemplate): The prompt to use for
            extracting triplets.
        max_triplets_per_chunk (int): The maximum number of triplets to extract.
        service_context (Optional[ServiceContext]): The service context to use.
        storage_context (Optional[StorageContext]): The storage context to use.
        graph_store (Optional[GraphStore]): The graph store to use.
        show_progress (bool): Whether to show tqdm progress bars. Defaults to False.
        include_embeddings (bool): Whether to include embeddings in the index.
            Defaults to False.
        max_object_length (int): The maximum length of the object in a triplet.
            Defaults to 128.
        kg_triplet_extract_fn (Optional[Callable]): The function to use for
            extracting triplets. Defaults to None.

    """

    index_struct_cls = KG

    def __init__(
        self,
        nodes: Optional[Sequence[BaseNode]] = None,
        objects: Optional[Sequence[IndexNode]] = None,
        index_struct: Optional[KG] = None,
        llm: Optional[LLM] = None,
        embed_model: Optional[BaseEmbedding] = None,
        storage_context: Optional[StorageContext] = None,
        kg_triple_extract_template: Optional[BasePromptTemplate] = None,
        max_triplets_per_chunk: int = 10,
        include_embeddings: bool = False,
        show_progress: bool = False,
        max_object_length: int = 128,
        kg_triplet_extract_fn: Optional[Callable] = None,
        # deprecated
        service_context: Optional[ServiceContext] = None,
        **kwargs: Any,
    ) -> None:
        """Initialize params."""
        # need to set parameters before building index in base class.
        self.include_embeddings = include_embeddings
        self.max_triplets_per_chunk = max_triplets_per_chunk
        self.kg_triple_extract_template = (
            kg_triple_extract_template or DEFAULT_KG_TRIPLET_EXTRACT_PROMPT
        )
        # NOTE: Partially format keyword extract template here.
        self.kg_triple_extract_template = (
            self.kg_triple_extract_template.partial_format(
                max_knowledge_triplets=self.max_triplets_per_chunk
            )
        )
        self._max_object_length = max_object_length
        self._kg_triplet_extract_fn = kg_triplet_extract_fn

        self._llm = llm or llm_from_settings_or_context(Settings, service_context)
        self._embed_model = embed_model or embed_model_from_settings_or_context(
            Settings, service_context
        )

        super().__init__(
            nodes=nodes,
            index_struct=index_struct,
            service_context=service_context,
            storage_context=storage_context,
            show_progress=show_progress,
            objects=objects,
            **kwargs,
        )

        # TODO: legacy conversion - remove in next release
        if (
            len(self.index_struct.table) > 0
            and isinstance(self.graph_store, SimpleGraphStore)
            and len(self.graph_store._data.graph_dict) == 0
        ):
            logger.warning("Upgrading previously saved KG index to new storage format.")
            self.graph_store._data.graph_dict = self.index_struct.rel_map

    @property
    def graph_store(self) -> GraphStore:
        return self._graph_store

    def as_retriever(
        self,
        retriever_mode: Optional[str] = None,
        embed_model: Optional[BaseEmbedding] = None,
        **kwargs: Any,
    ) -> BaseRetriever:
        from llama_index.core.indices.knowledge_graph.retrievers import (
            KGRetrieverMode,
            KGTableRetriever,
        )

        if len(self.index_struct.embedding_dict) > 0 and retriever_mode is None:
            retriever_mode = KGRetrieverMode.HYBRID

        return KGTableRetriever(
            self,
            object_map=self._object_map,
            llm=self._llm,
            embed_model=embed_model or self._embed_model,
            retriever_mode=retriever_mode,
            **kwargs,
        )

    def _extract_triplets(self, text: str) -> List[Tuple[str, str, str]]:
        if self._kg_triplet_extract_fn is not None:
            return self._kg_triplet_extract_fn(text)
        else:
            return self._llm_extract_triplets(text)

    def _llm_extract_triplets(self, text: str) -> List[Tuple[str, str, str]]:
        """Extract keywords from text."""
        response = self._llm.predict(
            self.kg_triple_extract_template,
            text=text,
        )
        return self._parse_triplet_response(
            response, max_length=self._max_object_length
        )

    @staticmethod
    def _parse_triplet_response(
        response: str, max_length: int = 128
    ) -> List[Tuple[str, str, str]]:
        knowledge_strs = response.strip().split("\n")
        results = []
        for text in knowledge_strs:
            if "(" not in text or ")" not in text or text.index(")") < text.index("("):
                # skip empty lines and non-triplets
                continue
            triplet_part = text[text.index("(") + 1 : text.index(")")]
            tokens = triplet_part.split(",")
            if len(tokens) != 3:
                continue

            if any(len(s.encode("utf-8")) > max_length for s in tokens):
                # We count byte-length instead of len() for UTF-8 chars,
                # will skip if any of the tokens are too long.
                # This is normally due to a poorly formatted triplet
                # extraction, in more serious KG building cases
                # we'll need NLP models to better extract triplets.
                continue

            subj, pred, obj = map(str.strip, tokens)
            if not subj or not pred or not obj:
                # skip partial triplets
                continue

            # Strip double quotes and Capitalize triplets for disambiguation
            subj, pred, obj = (
                entity.strip('"').capitalize() for entity in [subj, pred, obj]
            )

            results.append((subj, pred, obj))
        return results

    def _build_index_from_nodes(self, nodes: Sequence[BaseNode]) -> KG:
        """Build the index from nodes."""
        # do simple concatenation
        index_struct = self.index_struct_cls()
        nodes_with_progress = get_tqdm_iterable(
            nodes, self._show_progress, "Processing nodes"
        )
        for n in nodes_with_progress:
            triplets = self._extract_triplets(
                n.get_content(metadata_mode=MetadataMode.LLM)
            )
            logger.debug(f"> Extracted triplets: {triplets}")
            for triplet in triplets:
                subj, _, obj = triplet
                self.upsert_triplet(triplet)
                index_struct.add_node([subj, obj], n)

            if self.include_embeddings:
                triplet_texts = [str(t) for t in triplets]

                embed_outputs = self._embed_model.get_text_embedding_batch(
                    triplet_texts, show_progress=self._show_progress
                )
                for rel_text, rel_embed in zip(triplet_texts, embed_outputs):
                    index_struct.add_to_embedding_dict(rel_text, rel_embed)

        return index_struct

    def _insert(self, nodes: Sequence[BaseNode], **insert_kwargs: Any) -> None:
        """Insert a document."""
        for n in nodes:
            triplets = self._extract_triplets(
                n.get_content(metadata_mode=MetadataMode.LLM)
            )
            logger.debug(f"Extracted triplets: {triplets}")
            for triplet in triplets:
                subj, _, obj = triplet
                triplet_str = str(triplet)
                self.upsert_triplet(triplet)
                self._index_struct.add_node([subj, obj], n)
                if (
                    self.include_embeddings
                    and triplet_str not in self._index_struct.embedding_dict
                ):
                    rel_embedding = self._embed_model.get_text_embedding(triplet_str)
                    self._index_struct.add_to_embedding_dict(triplet_str, rel_embedding)

        # Update the storage context's index_store
        self._storage_context.index_store.add_index_struct(self._index_struct)

    def upsert_triplet(
        self, triplet: Tuple[str, str, str], include_embeddings: bool = False
    ) -> None:
        """Insert triplets and optionally embeddings.

        Used for manual insertion of KG triplets (in the form
        of (subject, relationship, object)).

        Args:
            triplet (tuple): Knowledge triplet
            embedding (Any, optional): Embedding option for the triplet. Defaults to None.
        """
        self._graph_store.upsert_triplet(*triplet)
        triplet_str = str(triplet)
        if include_embeddings:
            set_embedding = self._embed_model.get_text_embedding(triplet_str)
            self._index_struct.add_to_embedding_dict(str(triplet), set_embedding)
            self._storage_context.index_store.add_index_struct(self._index_struct)

    def add_node(self, keywords: List[str], node: BaseNode) -> None:
        """Add node.

        Used for manual insertion of nodes (keyed by keywords).

        Args:
            keywords (List[str]): Keywords to index the node.
            node (Node): Node to be indexed.

        """
        self._index_struct.add_node(keywords, node)
        self._docstore.add_documents([node], allow_update=True)

    def upsert_triplet_and_node(
        self,
        triplet: Tuple[str, str, str],
        node: BaseNode,
        include_embeddings: bool = False,
    ) -> None:
        """Upsert KG triplet and node.

        Calls both upsert_triplet and add_node.
        Behavior is idempotent; if Node already exists,
        only triplet will be added.

        Args:
            keywords (List[str]): Keywords to index the node.
            node (Node): Node to be indexed.
            include_embeddings (bool): Option to add embeddings for triplets. Defaults to False

        """
        subj, _, obj = triplet
        self.upsert_triplet(triplet)
        self.add_node([subj, obj], node)
        triplet_str = str(triplet)
        if include_embeddings:
            set_embedding = self._embed_model.get_text_embedding(triplet_str)
            self._index_struct.add_to_embedding_dict(str(triplet), set_embedding)
            self._storage_context.index_store.add_index_struct(self._index_struct)

    def _delete_node(self, node_id: str, **delete_kwargs: Any) -> None:
        """Delete a node."""
        raise NotImplementedError("Delete is not supported for KG index yet.")

    @property
    def ref_doc_info(self) -> Dict[str, RefDocInfo]:
        """Retrieve a dict mapping of ingested documents and their nodes+metadata."""
        node_doc_ids_sets = list(self._index_struct.table.values())
        node_doc_ids = list(set().union(*node_doc_ids_sets))
        nodes = self.docstore.get_nodes(node_doc_ids)

        all_ref_doc_info = {}
        for node in nodes:
            ref_node = node.source_node
            if not ref_node:
                continue

            ref_doc_info = self.docstore.get_ref_doc_info(ref_node.node_id)
            if not ref_doc_info:
                continue

            all_ref_doc_info[ref_node.node_id] = ref_doc_info
        return all_ref_doc_info

    def get_networkx_graph(self, limit: int = 100) -> Any:
        """Get networkx representation of the graph structure.

        Args:
            limit (int): Number of starting nodes to be included in the graph.

        NOTE: This function requires networkx to be installed.
        NOTE: This is a beta feature.

        """
        try:
            import networkx as nx
        except ImportError:
            raise ImportError(
                "Please install networkx to visualize the graph: `pip install networkx`"
            )

        g = nx.Graph()
        subjs = list(self.index_struct.table.keys())

        # add edges
        rel_map = self._graph_store.get_rel_map(subjs=subjs, depth=1, limit=limit)

        added_nodes = set()
        for keyword in rel_map:
            for path in rel_map[keyword]:
                subj = keyword
                for i in range(0, len(path), 2):
                    if i + 2 >= len(path):
                        break

                    if subj not in added_nodes:
                        g.add_node(subj)
                        added_nodes.add(subj)

                    rel = path[i + 1]
                    obj = path[i + 2]

                    g.add_edge(subj, obj, label=rel, title=rel)
                    subj = obj
        return g

    @property
    def query_context(self) -> Dict[str, Any]:
        return {GRAPH_STORE_KEY: self._graph_store}

ref_doc_info property #

ref_doc_info: Dict[str, RefDocInfo]

Retrieve a dict mapping of ingested documents and their nodes+metadata.

upsert_triplet #

upsert_triplet(triplet: Tuple[str, str, str], include_embeddings: bool = False) -> None

Insert triplets and optionally embeddings.

Used for manual insertion of KG triplets (in the form of (subject, relationship, object)).

Parameters:

Name Type Description Default
triplet tuple

Knowledge triplet

required
embedding Any

Embedding option for the triplet. Defaults to None.

required
Source code in llama-index-core/llama_index/core/indices/knowledge_graph/base.py
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
def upsert_triplet(
    self, triplet: Tuple[str, str, str], include_embeddings: bool = False
) -> None:
    """Insert triplets and optionally embeddings.

    Used for manual insertion of KG triplets (in the form
    of (subject, relationship, object)).

    Args:
        triplet (tuple): Knowledge triplet
        embedding (Any, optional): Embedding option for the triplet. Defaults to None.
    """
    self._graph_store.upsert_triplet(*triplet)
    triplet_str = str(triplet)
    if include_embeddings:
        set_embedding = self._embed_model.get_text_embedding(triplet_str)
        self._index_struct.add_to_embedding_dict(str(triplet), set_embedding)
        self._storage_context.index_store.add_index_struct(self._index_struct)

add_node #

add_node(keywords: List[str], node: BaseNode) -> None

Add node.

Used for manual insertion of nodes (keyed by keywords).

Parameters:

Name Type Description Default
keywords List[str]

Keywords to index the node.

required
node Node

Node to be indexed.

required
Source code in llama-index-core/llama_index/core/indices/knowledge_graph/base.py
266
267
268
269
270
271
272
273
274
275
276
277
def add_node(self, keywords: List[str], node: BaseNode) -> None:
    """Add node.

    Used for manual insertion of nodes (keyed by keywords).

    Args:
        keywords (List[str]): Keywords to index the node.
        node (Node): Node to be indexed.

    """
    self._index_struct.add_node(keywords, node)
    self._docstore.add_documents([node], allow_update=True)

upsert_triplet_and_node #

upsert_triplet_and_node(triplet: Tuple[str, str, str], node: BaseNode, include_embeddings: bool = False) -> None

Upsert KG triplet and node.

Calls both upsert_triplet and add_node. Behavior is idempotent; if Node already exists, only triplet will be added.

Parameters:

Name Type Description Default
keywords List[str]

Keywords to index the node.

required
node Node

Node to be indexed.

required
include_embeddings bool

Option to add embeddings for triplets. Defaults to False

False
Source code in llama-index-core/llama_index/core/indices/knowledge_graph/base.py
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
def upsert_triplet_and_node(
    self,
    triplet: Tuple[str, str, str],
    node: BaseNode,
    include_embeddings: bool = False,
) -> None:
    """Upsert KG triplet and node.

    Calls both upsert_triplet and add_node.
    Behavior is idempotent; if Node already exists,
    only triplet will be added.

    Args:
        keywords (List[str]): Keywords to index the node.
        node (Node): Node to be indexed.
        include_embeddings (bool): Option to add embeddings for triplets. Defaults to False

    """
    subj, _, obj = triplet
    self.upsert_triplet(triplet)
    self.add_node([subj, obj], node)
    triplet_str = str(triplet)
    if include_embeddings:
        set_embedding = self._embed_model.get_text_embedding(triplet_str)
        self._index_struct.add_to_embedding_dict(str(triplet), set_embedding)
        self._storage_context.index_store.add_index_struct(self._index_struct)

get_networkx_graph #

get_networkx_graph(limit: int = 100) -> Any

Get networkx representation of the graph structure.

Parameters:

Name Type Description Default
limit int

Number of starting nodes to be included in the graph.

100

NOTE: This function requires networkx to be installed. NOTE: This is a beta feature.

Source code in llama-index-core/llama_index/core/indices/knowledge_graph/base.py
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
def get_networkx_graph(self, limit: int = 100) -> Any:
    """Get networkx representation of the graph structure.

    Args:
        limit (int): Number of starting nodes to be included in the graph.

    NOTE: This function requires networkx to be installed.
    NOTE: This is a beta feature.

    """
    try:
        import networkx as nx
    except ImportError:
        raise ImportError(
            "Please install networkx to visualize the graph: `pip install networkx`"
        )

    g = nx.Graph()
    subjs = list(self.index_struct.table.keys())

    # add edges
    rel_map = self._graph_store.get_rel_map(subjs=subjs, depth=1, limit=limit)

    added_nodes = set()
    for keyword in rel_map:
        for path in rel_map[keyword]:
            subj = keyword
            for i in range(0, len(path), 2):
                if i + 2 >= len(path):
                    break

                if subj not in added_nodes:
                    g.add_node(subj)
                    added_nodes.add(subj)

                rel = path[i + 1]
                obj = path[i + 2]

                g.add_edge(subj, obj, label=rel, title=rel)
                subj = obj
    return g