Skip to content

Pairwise comparison

Evaluation modules.

PairwiseComparisonEvaluator #

Bases: BaseEvaluator

Pairwise comparison evaluator.

Evaluates the quality of a response vs. a "reference" response given a question by having an LLM judge which response is better.

Outputs whether the response given is better than the reference response.

Parameters:

Name Type Description Default
service_context Optional[ServiceContext]

The service context to use for evaluation.

None
eval_template Optional[Union[str, BasePromptTemplate]]

The template to use for evaluation.

None
enforce_consensus bool

Whether to enforce consensus (consistency if we flip the order of the answers). Defaults to True.

True
Source code in llama-index-core/llama_index/core/evaluation/pairwise.py
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
class PairwiseComparisonEvaluator(BaseEvaluator):
    """Pairwise comparison evaluator.

    Evaluates the quality of a response vs. a "reference" response given a question by
    having an LLM judge which response is better.

    Outputs whether the `response` given is better than the `reference` response.

    Args:
        service_context (Optional[ServiceContext]):
            The service context to use for evaluation.
        eval_template (Optional[Union[str, BasePromptTemplate]]):
            The template to use for evaluation.
        enforce_consensus (bool): Whether to enforce consensus (consistency if we
            flip the order of the answers). Defaults to True.

    """

    def __init__(
        self,
        llm: Optional[LLM] = None,
        eval_template: Optional[Union[BasePromptTemplate, str]] = None,
        parser_function: Callable[
            [str], Tuple[Optional[bool], Optional[float], Optional[str]]
        ] = _default_parser_function,
        enforce_consensus: bool = True,
        # deprecated
        service_context: Optional[ServiceContext] = None,
    ) -> None:
        self._llm = llm or llm_from_settings_or_context(Settings, service_context)

        self._eval_template: BasePromptTemplate
        if isinstance(eval_template, str):
            self._eval_template = PromptTemplate(eval_template)
        else:
            self._eval_template = eval_template or DEFAULT_EVAL_TEMPLATE

        self._enforce_consensus = enforce_consensus
        self._parser_function = parser_function

    def _get_prompts(self) -> PromptDictType:
        """Get prompts."""
        return {
            "eval_template": self._eval_template,
        }

    def _update_prompts(self, prompts: PromptDictType) -> None:
        """Update prompts."""
        if "eval_template" in prompts:
            self._eval_template = prompts["eval_template"]

    async def _get_eval_result(
        self,
        query: str,
        response: str,
        second_response: str,
        reference: Optional[str],
    ) -> EvaluationResult:
        """Get evaluation result."""
        eval_response = await self._llm.apredict(
            prompt=self._eval_template,
            query=query,
            answer_1=response,
            answer_2=second_response,
            reference=reference or "",
        )

        # Extract from response
        passing, score, feedback = self._parser_function(eval_response)

        if passing is None and score is None and feedback is None:
            return EvaluationResult(
                query=query,
                invalid_result=True,
                invalid_reason="Output cannot be parsed",
                feedback=eval_response,
            )
        else:
            return EvaluationResult(
                query=query,
                response=eval_response,
                passing=passing,
                score=score,
                feedback=eval_response,
                pairwise_source=EvaluationSource.ORIGINAL,
            )

    async def _resolve_results(
        self,
        eval_result: EvaluationResult,
        flipped_eval_result: EvaluationResult,
    ) -> EvaluationResult:
        """Resolve eval results from evaluation + flipped evaluation.

        Args:
            eval_result (EvaluationResult): Result when answer_1 is shown first
            flipped_eval_result (EvaluationResult): Result when answer_2 is shown first

        Returns:
            EvaluationResult: The final evaluation result
        """
        # add pairwise_source to eval_result and flipped_eval_result
        eval_result.pairwise_source = EvaluationSource.ORIGINAL
        flipped_eval_result.pairwise_source = EvaluationSource.FLIPPED

        # count the votes for each of the 2 answers
        votes_1 = 0.0
        votes_2 = 0.0
        if eval_result.score is not None and flipped_eval_result.score is not None:
            votes_1 = eval_result.score + (1 - flipped_eval_result.score)
            votes_2 = (1 - eval_result.score) + flipped_eval_result.score

        if votes_1 + votes_2 != 2:  # each round, the judge can give a total of 1 vote
            raise ValueError("Impossible score results. Total amount of votes is 2.")

        # get the judges (original and flipped) who voted for answer_1
        voters_1 = [eval_result] * (eval_result.score == 1.0) + [
            flipped_eval_result
        ] * (flipped_eval_result.score == 0.0)

        # get the judges (original and flipped) who voted for answer_2
        voters_2 = [eval_result] * (eval_result.score == 0.0) + [
            flipped_eval_result
        ] * (flipped_eval_result.score == 1.0)

        if votes_1 > votes_2:
            return voters_1[0]  # return any voter for answer_1
        elif votes_2 > votes_1:
            return voters_2[0]  # return any vote for answer_2
        else:
            if (
                eval_result.score == 0.5
            ):  # votes_1 == votes_2 can only happen if both are 1.0 (so actual tie)
                # doesn't matter which one we return here
                return eval_result
            else:  # Inconclusive case!
                return EvaluationResult(
                    query=eval_result.query,
                    response="",
                    passing=None,
                    score=0.5,
                    feedback="",
                    pairwise_source=EvaluationSource.NEITHER,
                )

    async def aevaluate(
        self,
        query: Optional[str] = None,
        response: Optional[str] = None,
        contexts: Optional[Sequence[str]] = None,
        second_response: Optional[str] = None,
        reference: Optional[str] = None,
        sleep_time_in_seconds: int = 0,
        **kwargs: Any,
    ) -> EvaluationResult:
        del kwargs  # Unused
        del contexts  # Unused

        if query is None or response is None or second_response is None:
            raise ValueError(
                "query, response, second_response, and reference must be provided"
            )

        await asyncio.sleep(sleep_time_in_seconds)

        eval_result = await self._get_eval_result(
            query, response, second_response, reference
        )
        if self._enforce_consensus and not eval_result.invalid_result:
            # Flip the order of the answers and see if the answer is consistent
            # (which means that the score should flip from 0 to 1 and vice-versa)
            # if not, then we return a tie
            flipped_eval_result = await self._get_eval_result(
                query, second_response, response, reference
            )
            if not flipped_eval_result.invalid_result:
                resolved_eval_result = await self._resolve_results(
                    eval_result, flipped_eval_result
                )
            else:
                resolved_eval_result = EvaluationResult(
                    query=eval_result.query,
                    response=eval_result.response,
                    feedback=flipped_eval_result.response,
                    invalid_result=True,
                    invalid_reason="Output cannot be parsed.",
                )
        else:
            resolved_eval_result = eval_result

        return resolved_eval_result