Skip to content

Correctness

Evaluation modules.

CorrectnessEvaluator #

Bases: BaseEvaluator

Correctness evaluator.

Evaluates the correctness of a question answering system. This evaluator depends on reference answer to be provided, in addition to the query string and response string.

It outputs a score between 1 and 5, where 1 is the worst and 5 is the best, along with a reasoning for the score. Passing is defined as a score greater than or equal to the given threshold.

Parameters:

Name Type Description Default
service_context Optional[ServiceContext]

Service context.

None
eval_template Optional[Union[BasePromptTemplate, str]]

Template for the evaluation prompt.

None
score_threshold float

Numerical threshold for passing the evaluation, defaults to 4.0.

4.0
Source code in llama-index-core/llama_index/core/evaluation/correctness.py
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
class CorrectnessEvaluator(BaseEvaluator):
    """Correctness evaluator.

    Evaluates the correctness of a question answering system.
    This evaluator depends on `reference` answer to be provided, in addition to the
    query string and response string.

    It outputs a score between 1 and 5, where 1 is the worst and 5 is the best,
    along with a reasoning for the score.
    Passing is defined as a score greater than or equal to the given threshold.

    Args:
        service_context (Optional[ServiceContext]): Service context.
        eval_template (Optional[Union[BasePromptTemplate, str]]):
            Template for the evaluation prompt.
        score_threshold (float): Numerical threshold for passing the evaluation,
            defaults to 4.0.
    """

    def __init__(
        self,
        llm: Optional[LLM] = None,
        eval_template: Optional[Union[BasePromptTemplate, str]] = None,
        score_threshold: float = 4.0,
        # deprecated
        service_context: Optional[ServiceContext] = None,
        parser_function: Callable[
            [str], Tuple[Optional[float], Optional[str]]
        ] = default_parser,
    ) -> None:
        self._llm = llm or llm_from_settings_or_context(Settings, service_context)

        self._eval_template: BasePromptTemplate
        if isinstance(eval_template, str):
            self._eval_template = PromptTemplate(eval_template)
        else:
            self._eval_template = eval_template or DEFAULT_EVAL_TEMPLATE

        self._score_threshold = score_threshold
        self.parser_function = parser_function

    def _get_prompts(self) -> PromptDictType:
        """Get prompts."""
        return {
            "eval_template": self._eval_template,
        }

    def _update_prompts(self, prompts: PromptDictType) -> None:
        """Update prompts."""
        if "eval_template" in prompts:
            self._eval_template = prompts["eval_template"]

    async def aevaluate(
        self,
        query: Optional[str] = None,
        response: Optional[str] = None,
        contexts: Optional[Sequence[str]] = None,
        reference: Optional[str] = None,
        sleep_time_in_seconds: int = 0,
        **kwargs: Any,
    ) -> EvaluationResult:
        del kwargs  # Unused
        del contexts  # Unused

        await asyncio.sleep(sleep_time_in_seconds)

        if query is None or response is None:
            raise ValueError("query, and response must be provided")

        eval_response = await self._llm.apredict(
            prompt=self._eval_template,
            query=query,
            generated_answer=response,
            reference_answer=reference or "(NO REFERENCE ANSWER SUPPLIED)",
        )

        # Use the parser function
        score, reasoning = self.parser_function(eval_response)

        return EvaluationResult(
            query=query,
            response=response,
            passing=score >= self._score_threshold if score is not None else None,
            score=score,
            feedback=reasoning,
        )