class PremAIEmbeddings(BaseEmbedding):
"""Class for PremAI embeddings."""
project_id: int = Field(
description=(
"The project ID in which the experiments or deployments are carried out. can find all your projects here: https://app.premai.io/projects/"
)
)
premai_api_key: Optional[str] = Field(
description="Prem AI API Key. Get it here: https://app.premai.io/api_keys/"
)
model_name: str = Field(
description=("The Embedding model to choose from"),
)
# Instance variables initialized via Pydantic's mechanism
_premai_client: "Prem" = PrivateAttr()
def __init__(
self,
project_id: int,
model_name: str,
premai_api_key: Optional[str] = None,
callback_manager: Optional[CallbackManager] = None,
**kwargs: Any,
):
api_key = get_from_param_or_env("api_key", premai_api_key, "PREMAI_API_KEY", "")
if not api_key:
raise ValueError(
"You must provide an API key to use PremAI. "
"You can either pass it in as an argument or set it `PREMAI_API_KEY`."
)
self._premai_client = Prem(api_key=api_key)
super().__init__(
project_id=project_id,
model_name=model_name,
callback_manager=callback_manager,
**kwargs,
)
@classmethod
def class_name(cls) -> str:
return "PremAIEmbeddings"
def _get_query_embedding(self, query: str) -> List[float]:
"""Get query embedding."""
embedding_response = self._premai_client.embeddings.create(
project_id=self.project_id, model=self.model_name, input=query
)
return embedding_response.data[0].embedding
async def _aget_query_embedding(self, query: str) -> List[float]:
raise NotImplementedError("Async calls are not available in this version.")
def _get_text_embedding(self, text: str) -> List[float]:
"""Get text embedding."""
embedding_response = self._premai_client.embeddings.create(
project_id=self.project_id, model=self.model_name, input=[text]
)
return embedding_response.data[0].embedding
def _get_text_embeddings(self, texts: List[str]) -> List[List[float]]:
"""Get text embeddings."""
embeddings = self._premai_client.embeddings.create(
self, model=self.model_name, project_id=self.project_id, input=texts
).data
return [embedding.embedding for embedding in embeddings]