Skip to content

Huggingface optimum

OptimumEmbedding #

Bases: BaseEmbedding

Source code in llama-index-integrations/embeddings/llama-index-embeddings-huggingface-optimum/llama_index/embeddings/huggingface_optimum/base.py
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
class OptimumEmbedding(BaseEmbedding):
    folder_name: str = Field(description="Folder name to load from.")
    max_length: int = Field(description="Maximum length of input.")
    pooling: str = Field(description="Pooling strategy. One of ['cls', 'mean'].")
    normalize: str = Field(default=True, description="Normalize embeddings or not.")
    query_instruction: Optional[str] = Field(
        description="Instruction to prepend to query text."
    )
    text_instruction: Optional[str] = Field(
        description="Instruction to prepend to text."
    )
    cache_folder: Optional[str] = Field(
        description="Cache folder for huggingface files."
    )

    _model: Any = PrivateAttr()
    _tokenizer: Any = PrivateAttr()
    _device: Any = PrivateAttr()

    def __init__(
        self,
        folder_name: str,
        pooling: str = "cls",
        max_length: Optional[int] = None,
        normalize: bool = True,
        query_instruction: Optional[str] = None,
        text_instruction: Optional[str] = None,
        model: Optional[Any] = None,
        tokenizer: Optional[Any] = None,
        embed_batch_size: int = DEFAULT_EMBED_BATCH_SIZE,
        callback_manager: Optional[CallbackManager] = None,
        device: Optional[str] = None,
    ):
        self._model = model or ORTModelForFeatureExtraction.from_pretrained(folder_name)
        self._tokenizer = tokenizer or AutoTokenizer.from_pretrained(folder_name)
        self._device = device or infer_torch_device()

        if max_length is None:
            try:
                max_length = int(self._model.config.max_position_embeddings)
            except Exception:
                raise ValueError(
                    "Unable to find max_length from model config. "
                    "Please provide max_length."
                )

        if pooling not in ["cls", "mean"]:
            raise ValueError(f"Pooling {pooling} not supported.")

        super().__init__(
            embed_batch_size=embed_batch_size,
            callback_manager=callback_manager,
            folder_name=folder_name,
            max_length=max_length,
            pooling=pooling,
            normalize=normalize,
            query_instruction=query_instruction,
            text_instruction=text_instruction,
        )

    @classmethod
    def class_name(cls) -> str:
        return "OptimumEmbedding"

    @classmethod
    def create_and_save_optimum_model(
        cls,
        model_name_or_path: str,
        output_path: str,
        export_kwargs: Optional[dict] = None,
    ) -> None:
        try:
            from optimum.onnxruntime import ORTModelForFeatureExtraction
            from transformers import AutoTokenizer
        except ImportError:
            raise ImportError(
                "OptimumEmbedding requires transformers to be installed.\n"
                "Please install transformers with "
                "`pip install transformers optimum[exporters]`."
            )

        export_kwargs = export_kwargs or {}
        model = ORTModelForFeatureExtraction.from_pretrained(
            model_name_or_path, export=True, **export_kwargs
        )
        tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)

        model.save_pretrained(output_path)
        tokenizer.save_pretrained(output_path)
        print(
            f"Saved optimum model to {output_path}. Use it with "
            f"`embed_model = OptimumEmbedding(folder_name='{output_path}')`."
        )

    def _mean_pooling(self, model_output: Any, attention_mask: Any) -> Any:
        """Mean Pooling - Take attention mask into account for correct averaging."""
        import torch

        # First element of model_output contains all token embeddings
        token_embeddings = model_output[0]
        input_mask_expanded = (
            attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
        )
        return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(
            input_mask_expanded.sum(1), min=1e-9
        )

    def _cls_pooling(self, model_output: list) -> Any:
        """Use the CLS token as the pooling token."""
        return model_output[0][:, 0]

    def _embed(self, sentences: List[str]) -> List[List[float]]:
        """Embed sentences."""
        encoded_input = self._tokenizer(
            sentences,
            padding=True,
            max_length=self.max_length,
            truncation=True,
            return_tensors="pt",
        )

        model_output = self._model(**encoded_input)

        if self.pooling == "cls":
            embeddings = self._cls_pooling(model_output)
        else:
            embeddings = self._mean_pooling(
                model_output, encoded_input["attention_mask"].to(self._device)
            )

        if self.normalize:
            import torch

            embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)

        return embeddings.tolist()

    def _get_query_embedding(self, query: str) -> List[float]:
        """Get query embedding."""
        query = format_query(query, self.model_name, self.query_instruction)
        return self._embed([query])[0]

    async def _aget_query_embedding(self, query: str) -> List[float]:
        """Get query embedding async."""
        return self._get_query_embedding(query)

    async def _aget_text_embedding(self, text: str) -> List[float]:
        """Get text embedding async."""
        return self._get_text_embedding(text)

    def _get_text_embedding(self, text: str) -> List[float]:
        """Get text embedding."""
        text = format_text(text, self.model_name, self.text_instruction)
        return self._embed([text])[0]

    def _get_text_embeddings(self, texts: List[str]) -> List[List[float]]:
        """Get text embeddings."""
        texts = [
            format_text(text, self.model_name, self.text_instruction) for text in texts
        ]
        return self._embed(texts)