This class provides an interface to generate embeddings using a model
deployed in Gradient AI. At the initialization it requires a model_id
of the model deployed in the cluster.
Note
Requires gradientai package to be available in the PYTHONPATH. It can be installed with
pip install gradientai.
Source code in llama-index-integrations/embeddings/llama-index-embeddings-gradient/llama_index/embeddings/gradient/base.py
classGradientEmbedding(BaseEmbedding):"""GradientAI embedding models. This class provides an interface to generate embeddings using a model deployed in Gradient AI. At the initialization it requires a model_id of the model deployed in the cluster. Note: Requires `gradientai` package to be available in the PYTHONPATH. It can be installed with `pip install gradientai`. """embed_batch_size:int=Field(default=GRADIENT_EMBED_BATCH_SIZE,gt=0)_gradient:Any=PrivateAttr()_model:Any=PrivateAttr()@classmethoddefclass_name(cls)->str:return"GradientEmbedding"def__init__(self,*,embed_batch_size:int=DEFAULT_EMBED_BATCH_SIZE,gradient_model_slug:str,gradient_access_token:Optional[str]=None,gradient_workspace_id:Optional[str]=None,gradient_host:Optional[str]=None,**kwargs:Any,):"""Initializes the GradientEmbedding class. During the initialization the `gradientai` package is imported. Using the access token, workspace id and the slug of the model, the model is fetched from Gradient AI and prepared to use. Args: embed_batch_size (int, optional): The batch size for embedding generation. Defaults to 10, must be > 0 and <= 100. gradient_model_slug (str): The model slug of the model in the Gradient AI account. gradient_access_token (str, optional): The access token of the Gradient AI account, if `None` read from the environment variable `GRADIENT_ACCESS_TOKEN`. gradient_workspace_id (str, optional): The workspace ID of the Gradient AI account, if `None` read from the environment variable `GRADIENT_WORKSPACE_ID`. gradient_host (str, optional): The host of the Gradient AI API. Defaults to None, which means the default host is used. Raises: ImportError: If the `gradientai` package is not available in the PYTHONPATH. ValueError: If the model cannot be fetched from Gradient AI. """ifembed_batch_size<=0:raiseValueError(f"Embed batch size {embed_batch_size} must be > 0.")self._gradient=gradientai.Gradient(access_token=gradient_access_token,workspace_id=gradient_workspace_id,host=gradient_host,)try:self._model=self._gradient.get_embeddings_model(slug=gradient_model_slug)exceptgradientai.openapi.client.exceptions.UnauthorizedExceptionase:logger.error(f"Error while loading model {gradient_model_slug}.")self._gradient.close()raiseValueError("Unable to fetch the requested embeddings model")fromesuper().__init__(embed_batch_size=embed_batch_size,model_name=gradient_model_slug,**kwargs)asyncdef_aget_text_embeddings(self,texts:List[str])->List[Embedding]:""" Embed the input sequence of text asynchronously. """inputs=[{"input":text}fortextintexts]result=awaitself._model.aembed(inputs=inputs).embeddingsreturn[e.embeddingforeinresult]def_get_text_embeddings(self,texts:List[str])->List[Embedding]:""" Embed the input sequence of text. """inputs=[{"input":text}fortextintexts]result=self._model.embed(inputs=inputs).embeddingsreturn[e.embeddingforeinresult]def_get_text_embedding(self,text:str)->Embedding:"""Alias for _get_text_embeddings() with single text input."""returnself._get_text_embeddings([text])[0]asyncdef_aget_text_embedding(self,text:str)->Embedding:"""Alias for _aget_text_embeddings() with single text input."""embedding=awaitself._aget_text_embeddings([text])returnembedding[0]asyncdef_aget_query_embedding(self,query:str)->Embedding:embedding=awaitself._aget_text_embeddings([f"{QUERY_INSTRUCTION_FOR_RETRIEVAL}{query}"])returnembedding[0]def_get_query_embedding(self,query:str)->Embedding:returnself._get_text_embeddings([f"{QUERY_INSTRUCTION_FOR_RETRIEVAL}{query}"])[0]