classClipEmbedding(MultiModalEmbedding):"""CLIP embedding models for encoding text and image for Multi-Modal purpose. This class provides an interface to generate embeddings using a model deployed in OpenAI CLIP. At the initialization it requires a model name of CLIP. Note: Requires `clip` package to be available in the PYTHONPATH. It can be installed with `pip install git+https://github.com/openai/CLIP.git`. """embed_batch_size:int=Field(default=DEFAULT_EMBED_BATCH_SIZE,gt=0)_clip:Any=PrivateAttr()_model:Any=PrivateAttr()_preprocess:Any=PrivateAttr()_device:Any=PrivateAttr()@classmethoddefclass_name(cls)->str:return"ClipEmbedding"def__init__(self,*,embed_batch_size:int=DEFAULT_EMBED_BATCH_SIZE,model_name:str=DEFAULT_CLIP_MODEL,**kwargs:Any,):"""Initializes the ClipEmbedding class. During the initialization the `clip` package is imported. Args: embed_batch_size (int, optional): The batch size for embedding generation. Defaults to 10, must be > 0 and <= 100. model_name (str): The model name of Clip model. Raises: ImportError: If the `clip` package is not available in the PYTHONPATH. ValueError: If the model cannot be fetched from Open AI. or if the embed_batch_size is not in the range (0, 100]. """ifembed_batch_size<=0:raiseValueError(f"Embed batch size {embed_batch_size} must be > 0.")try:importclipimporttorchexceptImportError:raiseImportError("ClipEmbedding requires `pip install git+https://github.com/openai/CLIP.git` and torch.")super().__init__(embed_batch_size=embed_batch_size,model_name=model_name,**kwargs)try:self._device="cuda"iftorch.cuda.is_available()else"cpu"ifself.model_namenotinAVAILABLE_CLIP_MODELS:raiseValueError(f"Model name {self.model_name} is not available in CLIP.")self._model,self._preprocess=clip.load(self.model_name,device=self._device)exceptExceptionase:logger.error("Error while loading clip model.")raiseValueError("Unable to fetch the requested embeddings model")frome# TEXT EMBEDDINGSasyncdef_aget_query_embedding(self,query:str)->Embedding:returnself._get_query_embedding(query)def_get_text_embedding(self,text:str)->Embedding:returnself._get_text_embeddings([text])[0]def_get_text_embeddings(self,texts:List[str])->List[Embedding]:results=[]fortextintexts:try:importclipexceptImportError:raiseImportError("ClipEmbedding requires `pip install git+https://github.com/openai/CLIP.git` and torch.")text_embedding=self._model.encode_text(clip.tokenize(text).to(self._device))results.append(text_embedding.tolist()[0])returnresultsdef_get_query_embedding(self,query:str)->Embedding:returnself._get_text_embedding(query)# IMAGE EMBEDDINGSasyncdef_aget_image_embedding(self,img_file_path:ImageType)->Embedding:returnself._get_image_embedding(img_file_path)def_get_image_embedding(self,img_file_path:ImageType)->Embedding:importtorchwithtorch.no_grad():image=(self._preprocess(Image.open(img_file_path)).unsqueeze(0).to(self._device))returnself._model.encode_image(image).tolist()[0]