Skip to content

Token counter

TokenCountingHandler #

Bases: BaseCallbackHandler

Callback handler for counting tokens in LLM and Embedding events.

Parameters:

Name Type Description Default
tokenizer Optional[Callable[[str], List]]

Tokenizer to use. Defaults to the global tokenizer (see llama_index.core.utils.globals_helper).

None
event_starts_to_ignore Optional[List[CBEventType]]

List of event types to ignore at the start of a trace.

None
event_ends_to_ignore Optional[List[CBEventType]]

List of event types to ignore at the end of a trace.

None
Source code in llama-index-core/llama_index/core/callbacks/token_counting.py
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
class TokenCountingHandler(BaseCallbackHandler):
    """Callback handler for counting tokens in LLM and Embedding events.

    Args:
        tokenizer:
            Tokenizer to use. Defaults to the global tokenizer
            (see llama_index.core.utils.globals_helper).
        event_starts_to_ignore: List of event types to ignore at the start of a trace.
        event_ends_to_ignore: List of event types to ignore at the end of a trace.
    """

    def __init__(
        self,
        tokenizer: Optional[Callable[[str], List]] = None,
        event_starts_to_ignore: Optional[List[CBEventType]] = None,
        event_ends_to_ignore: Optional[List[CBEventType]] = None,
        verbose: bool = False,
    ) -> None:
        self.llm_token_counts: List[TokenCountingEvent] = []
        self.embedding_token_counts: List[TokenCountingEvent] = []
        self.tokenizer = tokenizer or get_tokenizer()

        self._token_counter = TokenCounter(tokenizer=self.tokenizer)
        self._verbose = verbose

        super().__init__(
            event_starts_to_ignore=event_starts_to_ignore or [],
            event_ends_to_ignore=event_ends_to_ignore or [],
        )

    def start_trace(self, trace_id: Optional[str] = None) -> None:
        return

    def end_trace(
        self,
        trace_id: Optional[str] = None,
        trace_map: Optional[Dict[str, List[str]]] = None,
    ) -> None:
        return

    def on_event_start(
        self,
        event_type: CBEventType,
        payload: Optional[Dict[str, Any]] = None,
        event_id: str = "",
        parent_id: str = "",
        **kwargs: Any,
    ) -> str:
        return event_id

    def on_event_end(
        self,
        event_type: CBEventType,
        payload: Optional[Dict[str, Any]] = None,
        event_id: str = "",
        **kwargs: Any,
    ) -> None:
        """Count the LLM or Embedding tokens as needed."""
        if (
            event_type == CBEventType.LLM
            and event_type not in self.event_ends_to_ignore
            and payload is not None
        ):
            self.llm_token_counts.append(
                get_llm_token_counts(
                    token_counter=self._token_counter,
                    payload=payload,
                    event_id=event_id,
                )
            )

            if self._verbose:
                print(
                    "LLM Prompt Token Usage: "
                    f"{self.llm_token_counts[-1].prompt_token_count}\n"
                    "LLM Completion Token Usage: "
                    f"{self.llm_token_counts[-1].completion_token_count}",
                    flush=True,
                )
        elif (
            event_type == CBEventType.EMBEDDING
            and event_type not in self.event_ends_to_ignore
            and payload is not None
        ):
            total_chunk_tokens = 0
            for chunk in payload.get(EventPayload.CHUNKS, []):
                self.embedding_token_counts.append(
                    TokenCountingEvent(
                        event_id=event_id,
                        prompt=chunk,
                        prompt_token_count=self._token_counter.get_string_tokens(chunk),
                        completion="",
                        completion_token_count=0,
                    )
                )
                total_chunk_tokens += self.embedding_token_counts[-1].total_token_count

            if self._verbose:
                print(f"Embedding Token Usage: {total_chunk_tokens}", flush=True)

    @property
    def total_llm_token_count(self) -> int:
        """Get the current total LLM token count."""
        return sum([x.total_token_count for x in self.llm_token_counts])

    @property
    def prompt_llm_token_count(self) -> int:
        """Get the current total LLM prompt token count."""
        return sum([x.prompt_token_count for x in self.llm_token_counts])

    @property
    def completion_llm_token_count(self) -> int:
        """Get the current total LLM completion token count."""
        return sum([x.completion_token_count for x in self.llm_token_counts])

    @property
    def total_embedding_token_count(self) -> int:
        """Get the current total Embedding token count."""
        return sum([x.total_token_count for x in self.embedding_token_counts])

    def reset_counts(self) -> None:
        """Reset the token counts."""
        self.llm_token_counts = []
        self.embedding_token_counts = []

total_llm_token_count property #

total_llm_token_count: int

Get the current total LLM token count.

prompt_llm_token_count property #

prompt_llm_token_count: int

Get the current total LLM prompt token count.

completion_llm_token_count property #

completion_llm_token_count: int

Get the current total LLM completion token count.

total_embedding_token_count property #

total_embedding_token_count: int

Get the current total Embedding token count.

on_event_end #

on_event_end(event_type: CBEventType, payload: Optional[Dict[str, Any]] = None, event_id: str = '', **kwargs: Any) -> None

Count the LLM or Embedding tokens as needed.

Source code in llama-index-core/llama_index/core/callbacks/token_counting.py
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
def on_event_end(
    self,
    event_type: CBEventType,
    payload: Optional[Dict[str, Any]] = None,
    event_id: str = "",
    **kwargs: Any,
) -> None:
    """Count the LLM or Embedding tokens as needed."""
    if (
        event_type == CBEventType.LLM
        and event_type not in self.event_ends_to_ignore
        and payload is not None
    ):
        self.llm_token_counts.append(
            get_llm_token_counts(
                token_counter=self._token_counter,
                payload=payload,
                event_id=event_id,
            )
        )

        if self._verbose:
            print(
                "LLM Prompt Token Usage: "
                f"{self.llm_token_counts[-1].prompt_token_count}\n"
                "LLM Completion Token Usage: "
                f"{self.llm_token_counts[-1].completion_token_count}",
                flush=True,
            )
    elif (
        event_type == CBEventType.EMBEDDING
        and event_type not in self.event_ends_to_ignore
        and payload is not None
    ):
        total_chunk_tokens = 0
        for chunk in payload.get(EventPayload.CHUNKS, []):
            self.embedding_token_counts.append(
                TokenCountingEvent(
                    event_id=event_id,
                    prompt=chunk,
                    prompt_token_count=self._token_counter.get_string_tokens(chunk),
                    completion="",
                    completion_token_count=0,
                )
            )
            total_chunk_tokens += self.embedding_token_counts[-1].total_token_count

        if self._verbose:
            print(f"Embedding Token Usage: {total_chunk_tokens}", flush=True)

reset_counts #

reset_counts() -> None

Reset the token counts.

Source code in llama-index-core/llama_index/core/callbacks/token_counting.py
213
214
215
216
def reset_counts(self) -> None:
    """Reset the token counts."""
    self.llm_token_counts = []
    self.embedding_token_counts = []