classSearChainPack(BaseLlamaPack):"""Simple short form SearChain pack."""def__init__(self,data_path:str,dprtokenizer_path:str="/dpr_reader_multi",dprmodel_path:str="/dpr_reader_multi",crossencoder_name_or_path:str="/Quora_cross_encoder",device:str="cuda",**kwargs:Any,)->None:"""Init params."""self.device=deviceself.crossencoder=CrossEncoder(crossencoder_name_or_path,device=self.device)self.documents=SimpleDirectoryReader(data_path).load_data()self.index=VectorStoreIndex.from_documents(self.documents)self.query_engine=self.index.as_query_engine()self.llm=OpenAI()self.dprtokenizer=DPRReaderTokenizer.from_pretrained(dprtokenizer_path)self.dprmodel=DPRReader.from_pretrained(dprmodel_path)self.dprmodel.eval()self.dprmodel.to(self.device)def_get_answer(self,query,texts,title):print("texts:"+texts)encoded_inputs=self.dprtokenizer(questions=[query],titles=[title],texts=[texts],return_tensors="pt",max_length=510,)outputs=self.dprmodel(**encoded_inputs.to(self.device))start_logits=outputs.start_logitsend_logits=outputs.end_logitsrelevance_logits=outputs.relevance_logitsanswer_start_index=outputs.start_logits.argmax()answer_end_index=outputs.end_logits.argmax()predict_answer_tokens=encoded_inputs.input_ids[0,answer_start_index:answer_end_index+1]answer=self.dprtokenizer.decode(predict_answer_tokens)returnanswer,relevance_logitsdef_ir(self,query,query_seen_list):flag_contibue_label=Falsequery_list=query.split("\n")message=""foridxinrange(len(query_list)):query_item=query_list[idx]if"Query"inquery_itemand"]:"inquery_item:temp=query_item.split("]")iflen(temp)<2:continuequery_type=temp[0]query_item=temp[1]if":"inquery_item:query_item=query_item[1:]ifnot_have_seen_or_not(self.crossencoder,query_item,query_seen_list,query_type):now_reference={}query_seen_list.append(query_item)response=str(self.query_engine.query(query_item))answer,relevance_score=self._get_answer(query=query_item,texts="",title=response)now_reference["query"]=query_itemnow_reference["answer"]=answernow_reference["reference"]=responsenow_reference["ref_score"]=relevance_scorenow_reference["idx"]=responseif"Unsolved"inquery_type:message="[Unsolved Query]:{}<SEP>[Answer]:{}<SEP>[Reference]:{}<SEP>".format(query_item,answer,response)flag_contibue_label=Truebreakelifrelevance_score>1.5:answer_start_idx=idx+1predict_answer=""whileanswer_start_idx<len(query_list):if"Answer"inquery_list[answer_start_idx]:predict_answer=query_list[answer_start_idx]breakanswer_start_idx+=1match_label=_match_or_not(prediction=predict_answer,ground_truth=answer)ifmatch_label:continueelse:message="[Query]:{}<SEP>[Answer]:{}<SEP>[Reference]:{}<SEP>".format(query_item,answer,response)flag_contibue_label=Truebreakreturnmessage,flag_contibue_label,query_seen_listdef_extract(self,message_keys_list):text=message_keys_listidx=len(text)whileidx>0:idx=idx-1item=text[idx]ifitem.role=="assistant"and"Final Content"initem.content:list_item=item.content.split("\n")forspinlist_item:if"Final Content"insp:returnitem.contentreturn"Sorry, I still cannot solve this question!"defexecute(self,data_path,start_idx):data=open(data_path)fork,exampleinenumerate(data):ifk<start_idx:continueexample=json.loads(example)q=example["question"]round_count=0message_keys_list=[ChatMessage(role="user",content="""Construct a global reasoning chain for this complex [Question] : " {} " You should generate a query to the search engine based on what you already know at each step of the reasoning chain, starting with [Query]. If you know the answer for [Query], generate it starting with [Answer]. You can try to generate the final answer for the [Question] by referring to the [Query]-[Answer] pairs, starting with [Final Content]. If you don't know the answer, generate a query to search engine based on what you already know and do not know, starting with [Unsolved Query]. For example: [Question]: "Where do greyhound buses that are in the birthplace of Spirit If...'s performer leave from? " [Query 1]: Who is the performer of Spirit If... ? If you don't know the answer: [Unsolved Query]: Who is the performer of Spirit If... ? If you know the answer: [Answer 1]: The performer of Spirit If... is Kevin Drew. [Query 2]: Where was Kevin Drew born? If you don't know the answer: [Unsolved Query]: Where was Kevin Drew born? If you know the answer: [Answer 2]: Toronto. [Query 3]: Where do greyhound buses in Toronto leave from? If you don't know the answer: [Unsolved Query]: Where do greyhound buses in Toronto leave from? If you know the answer: [Answer 3]: Toronto Coach Terminal. [Final Content]: The performer of Spirit If... is Kevin Drew [1]. Kevin Drew was born in Toronto [2]. Greyhound buses in Toronto leave from Toronto Coach Terminal [3]. So the final answer is Toronto Coach Terminal. [Question]:"Which magazine was started first Arthur’s Magazine or First for Women?" [Query 1]: When was Arthur’s Magazine started? [Answer 1]: 1844. [Query 2]: When was First for Women started? [Answer 2]: 1989 [Final Content]: Arthur’s Magazine started in 1844 [1]. First for Women started in 1989 [2]. So Arthur’s Magazine was started first. So the answer is Arthur’s Magazi [Question]: {}""".format(q,q),)]feedback_answer="continue"predict_answer=""query_seen_list=[]whileround_count<5andfeedback_answer!="end":time.sleep(0.5)rsp=self.llm.chat(message_keys_list)round_count+=1input_str=str(rsp.message.content)message_keys_list.append(ChatMessage(role="assistant",content=input_str))predict_answer+=input_strmessage,flag_contibue_label,query_seen_list=self._ir(input_str,query_seen_list)ifflag_contibue_label:feedback=messageelse:feedback="end"iffeedback=="end":break# [Query]:xxxx<SEP>[Answer]:xxxx<SEP>[Reference]:xxxx<SEP>feedback_list=feedback.split("<SEP>")if"Unsolved Query"notinfeedback:new_prompt="""Reference: {} According to this Reference, the answer for "{}" should be "{}", you can change your answer based on the Reference and continue constructing the reasoning chain to give the final answer for [Question]:{}""".format(feedback_list[0],feedback_list[1],q,feedback_list[2])else:new_prompt="""Reference: {} According to this Reference, the answer for "{}" should be "{}", you can give your answer based on the Reference and continue constructing the reasoning chain to give the final answer for [Question]:{} """.format(feedback_list[0],feedback_list[1],q,feedback_list[2])message_keys_list.append(ChatMessage(role="user",content=new_prompt))result=self._extract(message_keys_list)print(result)return-1