classLlamafileEmbedding(BaseEmbedding):"""Class for llamafile embeddings. llamafile lets you distribute and run large language models with a single file. To get started, see: https://github.com/Mozilla-Ocho/llamafile To use this class, you will need to first: 1. Download a llamafile. 2. Make the downloaded file executable: `chmod +x path/to/model.llamafile` 3. Start the llamafile in server mode with embeddings enabled: `./path/to/model.llamafile --server --nobrowser --embedding` """base_url:str=Field(description="base url of the llamafile server",default="http://localhost:8080")request_timeout:float=Field(default=DEFAULT_REQUEST_TIMEOUT,description="The timeout for making http request to llamafile API server",)def__init__(self,base_url:str="http://localhost:8080",callback_manager:Optional[CallbackManager]=None,**kwargs,)->None:super().__init__(base_url=base_url,callback_manager=callback_manager,**kwargs)@classmethoddefclass_name(cls)->str:return"LlamafileEmbedding"def_get_query_embedding(self,query:str)->Embedding:returnself._get_text_embedding(query)asyncdef_aget_query_embedding(self,query:str)->Embedding:returnawaitself._aget_text_embedding(query)def_get_text_embedding(self,text:str)->Embedding:""" Embed the input text synchronously. """request_body={"content":text,}withhttpx.Client(timeout=Timeout(self.request_timeout))asclient:response=client.post(url=f"{self.base_url}/embedding",headers={"Content-Type":"application/json"},json=request_body,)response.encoding="utf-8"response.raise_for_status()returnresponse.json()["embedding"]asyncdef_aget_text_embedding(self,text:str)->Embedding:""" Embed the input text asynchronously. """request_body={"content":text,}asyncwithhttpx.AsyncClient(timeout=Timeout(self.request_timeout))asclient:response=awaitclient.post(url=f"{self.base_url}/embedding",headers={"Content-Type":"application/json"},json=request_body,)response.encoding="utf-8"response.raise_for_status()returnresponse.json()["embedding"]def_get_text_embeddings(self,texts:List[str])->List[Embedding]:""" Embed the input texts synchronously. """request_body={"content":texts,}withhttpx.Client(timeout=Timeout(self.request_timeout))asclient:response=client.post(url=f"{self.base_url}/embedding",headers={"Content-Type":"application/json"},json=request_body,)response.encoding="utf-8"response.raise_for_status()return[output["embedding"]foroutputinresponse.json()["results"]]asyncdef_aget_text_embeddings(self,texts:List[str])->Embedding:""" Embed the input text asynchronously. """request_body={"content":texts,}asyncwithhttpx.AsyncClient(timeout=Timeout(self.request_timeout))asclient:response=awaitclient.post(url=f"{self.base_url}/embedding",headers={"Content-Type":"application/json"},json=request_body,)response.encoding="utf-8"response.raise_for_status()return[output["embedding"]foroutputinresponse.json()["results"]]