Skip to content

Document Stores#

Document stores contain ingested document chunks, which we call Node objects.

See the API Reference for more details.

Simple Document Store#

By default, the SimpleDocumentStore stores Node objects in-memory. They can be persisted to (and loaded from) disk by calling docstore.persist() (and SimpleDocumentStore.from_persist_path(...) respectively).

A more complete example can be found here

MongoDB Document Store#

We support MongoDB as an alternative document store backend that persists data as Node objects are ingested.

from llama_index.storage.docstore.mongodb import MongoDocumentStore
from llama_index.core.node_parser import SentenceSplitter

# create parser and parse document into nodes
parser = SentenceSplitter()
nodes = parser.get_nodes_from_documents(documents)

# create (or load) docstore and add nodes
docstore = MongoDocumentStore.from_uri(uri="<mongodb+srv://...>")
docstore.add_documents(nodes)

# create storage context
storage_context = StorageContext.from_defaults(docstore=docstore)

# build index
index = VectorStoreIndex(nodes, storage_context=storage_context)

Under the hood, MongoDocumentStore connects to a fixed MongoDB database and initializes new collections (or loads existing collections) for your nodes.

Note: You can configure the db_name and namespace when instantiating MongoDocumentStore, otherwise they default to db_name="db_docstore" and namespace="docstore".

Note that it's not necessary to call storage_context.persist() (or docstore.persist()) when using an MongoDocumentStore since data is persisted by default.

You can easily reconnect to your MongoDB collection and reload the index by re-initializing a MongoDocumentStore with an existing db_name and collection_name.

A more complete example can be found here

Redis Document Store#

We support Redis as an alternative document store backend that persists data as Node objects are ingested.

from llama_index.storage.docstore.redis import RedisDocumentStore
from llama_index.core.node_parser import SentenceSplitter

# create parser and parse document into nodes
parser = SentenceSplitter()
nodes = parser.get_nodes_from_documents(documents)

# create (or load) docstore and add nodes
docstore = RedisDocumentStore.from_host_and_port(
    host="127.0.0.1", port="6379", namespace="llama_index"
)
docstore.add_documents(nodes)

# create storage context
storage_context = StorageContext.from_defaults(docstore=docstore)

# build index
index = VectorStoreIndex(nodes, storage_context=storage_context)

Under the hood, RedisDocumentStore connects to a redis database and adds your nodes to a namespace stored under {namespace}/docs.

Note: You can configure the namespace when instantiating RedisDocumentStore, otherwise it defaults namespace="docstore".

You can easily reconnect to your Redis client and reload the index by re-initializing a RedisDocumentStore with an existing host, port, and namespace.

A more complete example can be found here

Firestore Document Store#

We support Firestore as an alternative document store backend that persists data as Node objects are ingested.

from llama_index.storage.docstore.firestore import FirestoreDocumentStore
from llama_index.core.node_parser import SentenceSplitter

# create parser and parse document into nodes
parser = SentenceSplitter()
nodes = parser.get_nodes_from_documents(documents)

# create (or load) docstore and add nodes
docstore = FirestoreDocumentStore.from_database(
    project="project-id",
    database="(default)",
)
docstore.add_documents(nodes)

# create storage context
storage_context = StorageContext.from_defaults(docstore=docstore)

# build index
index = VectorStoreIndex(nodes, storage_context=storage_context)

Under the hood, FirestoreDocumentStore connects to a firestore database in Google Cloud and adds your nodes to a namespace stored under {namespace}/docs.

Note: You can configure the namespace when instantiating FirestoreDocumentStore, otherwise it defaults namespace="docstore".

You can easily reconnect to your Firestore database and reload the index by re-initializing a FirestoreDocumentStore with an existing project, database, and namespace.

A more complete example can be found here

Couchbase Document Store#

We support Couchbase as an alternative document store backend that persists data as Node objects are ingested.

from llama_index.storage.docstore.couchbase import CouchbaseDocumentStore
from llama_index.core.node_parser import SentenceSplitter

from couchbase.cluster import Cluster
from couchbase.auth import PasswordAuthenticator
from couchbase.options import ClusterOptions
from datetime import timedelta

# create couchbase client
auth = PasswordAuthenticator("DB_USERNAME", "DB_PASSWORD")
options = ClusterOptions(authenticator=auth)

cluster = Cluster("couchbase://localhost", options)

# Wait until the cluster is ready for use.
cluster.wait_until_ready(timedelta(seconds=5))

# create parser and parse document into nodes
parser = SentenceSplitter()
nodes = parser.get_nodes_from_documents(documents)

# create (or load) docstore and add nodes
docstore = CouchbaseDocumentStore.from_couchbase_client(
    client=cluster,
    bucket_name="llama-index",
    scope_name="_default",
    namespace="default",
)
docstore.add_documents(nodes)

# create storage context
storage_context = StorageContext.from_defaults(docstore=docstore)

# build index
index = VectorStoreIndex(nodes, storage_context=storage_context)

Under the hood, CouchbaseDocumentStore connects to a Couchbase operational database and adds your nodes to a collection named under {namespace}_data in the specified {bucket_name} and {scope_name}.

Note: You can configure the namespace, bucket and scope when instantiating CouchbaseIndexStore. By default, the collection used is docstore_data. Apart from alphanumeric characters, -, _ and % are only allowed as part of the collection name. The store will automatically convert other special characters to _.

You can easily reconnect to your Couchbase database and reload the index by re-initializing a CouchbaseDocumentStore with an existing client, bucket_name, scope_name and namespace.

Tablestore Document Store#

We support Tablestore as an alternative document store backend that persists data as Node objects are ingested.

from llama_index.core import Document
from llama_index.core import StorageContext, VectorStoreIndex
from llama_index.core.node_parser import SentenceSplitter

from llama_index.storage.docstore.tablestore import TablestoreDocumentStore

# create parser and parse document into nodes
parser = SentenceSplitter()
documents = [
    Document(text="I like cat.", id_="1", metadata={"key1": "value1"}),
    Document(text="Mike likes dog.", id_="2", metadata={"key2": "value2"}),
]
nodes = parser.get_nodes_from_documents(documents)

# create (or load) doc_store and add nodes
docs_tore = TablestoreDocumentStore.from_config(
    endpoint="<tablestore_end_point>",
    instance_name="<tablestore_instance_name>",
    access_key_id="<tablestore_access_key_id>",
    access_key_secret="<tablestore_access_key_secret>",
)
docs_tore.add_documents(nodes)

# create storage context
storage_context = StorageContext.from_defaults(docstore=docs_tore)

# build index
index = VectorStoreIndex(nodes, storage_context=storage_context)

Under the hood, TablestoreDocumentStore connects to a Tablestore database and adds your nodes to a table named under {namespace}_data.

Note: You can configure the namespace when instantiating TablestoreDocumentStore.

You can easily reconnect to your Tablestore database and reload the index by re-initializing a TablestoreDocumentStore with an existing endpoint, instance_name, access_key_id and access_key_secret.

A more complete example can be found here