Faiss Vector Store¶
If you're opening this Notebook on colab, you will probably need to install LlamaIndex 🦙.
In [ ]:
Copied!
%pip install llama-index-vector-stores-faiss
%pip install llama-index-vector-stores-faiss
In [ ]:
Copied!
!pip install llama-index
!pip install llama-index
Creating a Faiss Index¶
In [ ]:
Copied!
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
In [ ]:
Copied!
import faiss
# dimensions of text-ada-embedding-002
d = 1536
faiss_index = faiss.IndexFlatL2(d)
import faiss
# dimensions of text-ada-embedding-002
d = 1536
faiss_index = faiss.IndexFlatL2(d)
Load documents, build the VectorStoreIndex¶
In [ ]:
Copied!
from llama_index.core import (
SimpleDirectoryReader,
load_index_from_storage,
VectorStoreIndex,
StorageContext,
)
from llama_index.vector_stores.faiss import FaissVectorStore
from IPython.display import Markdown, display
from llama_index.core import (
SimpleDirectoryReader,
load_index_from_storage,
VectorStoreIndex,
StorageContext,
)
from llama_index.vector_stores.faiss import FaissVectorStore
from IPython.display import Markdown, display
Download Data
In [ ]:
Copied!
!mkdir -p 'data/paul_graham/'
!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'
!mkdir -p 'data/paul_graham/'
!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'
In [ ]:
Copied!
# load documents
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
# load documents
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
In [ ]:
Copied!
vector_store = FaissVectorStore(faiss_index=faiss_index)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(
documents, storage_context=storage_context
)
vector_store = FaissVectorStore(faiss_index=faiss_index)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(
documents, storage_context=storage_context
)
In [ ]:
Copied!
# save index to disk
index.storage_context.persist()
# save index to disk
index.storage_context.persist()
In [ ]:
Copied!
# load index from disk
vector_store = FaissVectorStore.from_persist_dir("./storage")
storage_context = StorageContext.from_defaults(
vector_store=vector_store, persist_dir="./storage"
)
index = load_index_from_storage(storage_context=storage_context)
# load index from disk
vector_store = FaissVectorStore.from_persist_dir("./storage")
storage_context = StorageContext.from_defaults(
vector_store=vector_store, persist_dir="./storage"
)
index = load_index_from_storage(storage_context=storage_context)
Query Index¶
In [ ]:
Copied!
# set Logging to DEBUG for more detailed outputs
query_engine = index.as_query_engine()
response = query_engine.query("What did the author do growing up?")
# set Logging to DEBUG for more detailed outputs
query_engine = index.as_query_engine()
response = query_engine.query("What did the author do growing up?")
In [ ]:
Copied!
display(Markdown(f"<b>{response}</b>"))
display(Markdown(f"{response}"))
In [ ]:
Copied!
# set Logging to DEBUG for more detailed outputs
query_engine = index.as_query_engine()
response = query_engine.query(
"What did the author do after his time at Y Combinator?"
)
# set Logging to DEBUG for more detailed outputs
query_engine = index.as_query_engine()
response = query_engine.query(
"What did the author do after his time at Y Combinator?"
)
In [ ]:
Copied!
display(Markdown(f"<b>{response}</b>"))
display(Markdown(f"{response}"))