EmotionPrompt in RAG¶
Inspired by the "Large Language Models Understand and Can Be Enhanced by Emotional Stimuli" by Li et al., in this guide we show you how to evaluate the effects of emotional stimuli on your RAG pipeline:
- Setup the RAG pipeline with a basic vector index with the core QA template.
- Create some candidate stimuli (inspired by Fig. 2 of the paper)
- For each candidate stimulit, prepend to QA prompt and evaluate.
In [ ]:
Copied!
%pip install llama-index-llms-openai
%pip install llama-index-readers-file pymupdf
%pip install llama-index-llms-openai
%pip install llama-index-readers-file pymupdf
Setup Data¶
We use the Llama 2 paper as the input data source for our RAG pipeline.
In [ ]:
Copied!
!mkdir -p llama_2_data && wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "llama_2_data/llama2.pdf"
!mkdir -p llama_2_data && wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "llama_2_data/llama2.pdf"
In [ ]:
Copied!
from llama_index.readers.file import PyMuPDFReader
from llama_index.core import Document
from llama_index.core.node_parser import SentenceSplitter
docs0 = PyMuPDFReader().load_data("./llama_2_data/llama2.pdf")
# combine all documents into one
doc_text = "\n\n".join([d.get_content() for d in docs0])
docs = [Document(text=doc_text)]
# split the document into chunks of 1024 tokens
node_parser = SentenceSplitter(chunk_size=1024)
base_nodes = node_parser.get_nodes_from_documents(docs)
from llama_index.readers.file import PyMuPDFReader
from llama_index.core import Document
from llama_index.core.node_parser import SentenceSplitter
docs0 = PyMuPDFReader().load_data("./llama_2_data/llama2.pdf")
# combine all documents into one
doc_text = "\n\n".join([d.get_content() for d in docs0])
docs = [Document(text=doc_text)]
# split the document into chunks of 1024 tokens
node_parser = SentenceSplitter(chunk_size=1024)
base_nodes = node_parser.get_nodes_from_documents(docs)
Setup Vector Index over this Data¶
We load this data into an in-memory vector store (embedded with OpenAI embeddings).
We'll be aggressively optimizing the QA prompt for this RAG pipeline.
In [ ]:
Copied!
import os
os.environ["OPENAI_API_KEY"] = "sk-..."
import os
os.environ["OPENAI_API_KEY"] = "sk-..."
In [ ]:
Copied!
from llama_index.core import Settings
from llama_index.llms.openai import OpenAI
from llama_index.embeddings.openai import OpenAIEmbedding
Settings.llm = OpenAI(model="gpt-4o-mini")
Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small")
from llama_index.core import Settings
from llama_index.llms.openai import OpenAI
from llama_index.embeddings.openai import OpenAIEmbedding
Settings.llm = OpenAI(model="gpt-4o-mini")
Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small")
In [ ]:
Copied!
from llama_index.core import VectorStoreIndex
index = VectorStoreIndex(base_nodes)
query_engine = index.as_query_engine(similarity_top_k=2)
from llama_index.core import VectorStoreIndex
index = VectorStoreIndex(base_nodes)
query_engine = index.as_query_engine(similarity_top_k=2)
Evaluation Setup¶
Golden Dataset¶
Here we load in a "golden" dataset.
NOTE: We pull this in from Dropbox. For details on how to generate a dataset please see our DatasetGenerator
module.
In [ ]:
Copied!
!wget "https://www.dropbox.com/scl/fi/fh9vsmmm8vu0j50l3ss38/llama2_eval_qr_dataset.json?rlkey=kkoaez7aqeb4z25gzc06ak6kb&dl=1" -O llama2_eval_qr_dataset.json
!wget "https://www.dropbox.com/scl/fi/fh9vsmmm8vu0j50l3ss38/llama2_eval_qr_dataset.json?rlkey=kkoaez7aqeb4z25gzc06ak6kb&dl=1" -O llama2_eval_qr_dataset.json
In [ ]:
Copied!
from llama_index.core.evaluation import QueryResponseDataset
# optional
eval_dataset = QueryResponseDataset.from_json("./llama2_eval_qr_dataset.json")
from llama_index.core.evaluation import QueryResponseDataset
# optional
eval_dataset = QueryResponseDataset.from_json("./llama2_eval_qr_dataset.json")
Get Evaluator¶
In [ ]:
Copied!
from llama_index.core.evaluation import CorrectnessEvaluator, BatchEvalRunner
evaluator_c = CorrectnessEvaluator()
evaluator_dict = {"correctness": evaluator_c}
batch_runner = BatchEvalRunner(evaluator_dict, workers=2, show_progress=True)
from llama_index.core.evaluation import CorrectnessEvaluator, BatchEvalRunner
evaluator_c = CorrectnessEvaluator()
evaluator_dict = {"correctness": evaluator_c}
batch_runner = BatchEvalRunner(evaluator_dict, workers=2, show_progress=True)
Define Correctness Eval Function¶
In [ ]:
Copied!
import numpy as np
from llama_index.core.evaluation.eval_utils import aget_responses
async def get_correctness(query_engine, eval_qa_pairs, batch_runner):
# then evaluate
# TODO: evaluate a sample of generated results
eval_qs = [q for q, _ in eval_qa_pairs]
eval_answers = [a for _, a in eval_qa_pairs]
pred_responses = await aget_responses(
eval_qs, query_engine, show_progress=True
)
eval_results = await batch_runner.aevaluate_responses(
eval_qs, responses=pred_responses, reference=eval_answers
)
avg_correctness = np.array(
[r.score for r in eval_results["correctness"]]
).mean()
return avg_correctness
import numpy as np
from llama_index.core.evaluation.eval_utils import aget_responses
async def get_correctness(query_engine, eval_qa_pairs, batch_runner):
# then evaluate
# TODO: evaluate a sample of generated results
eval_qs = [q for q, _ in eval_qa_pairs]
eval_answers = [a for _, a in eval_qa_pairs]
pred_responses = await aget_responses(
eval_qs, query_engine, show_progress=True
)
eval_results = await batch_runner.aevaluate_responses(
eval_qs, responses=pred_responses, reference=eval_answers
)
avg_correctness = np.array(
[r.score for r in eval_results["correctness"]]
).mean()
return avg_correctness
Try Out Emotion Prompts¶
We pul some emotion stimuli from the paper to try out.
In [ ]:
Copied!
emotion_stimuli_dict = {
"ep01": "Write your answer and give me a confidence score between 0-1 for your answer. ",
"ep02": "This is very important to my career. ",
"ep03": "You'd better be sure.",
# add more from the paper here!!
}
# NOTE: ep06 is the combination of ep01, ep02, ep03
emotion_stimuli_dict["ep06"] = (
emotion_stimuli_dict["ep01"]
+ emotion_stimuli_dict["ep02"]
+ emotion_stimuli_dict["ep03"]
)
emotion_stimuli_dict = {
"ep01": "Write your answer and give me a confidence score between 0-1 for your answer. ",
"ep02": "This is very important to my career. ",
"ep03": "You'd better be sure.",
# add more from the paper here!!
}
# NOTE: ep06 is the combination of ep01, ep02, ep03
emotion_stimuli_dict["ep06"] = (
emotion_stimuli_dict["ep01"]
+ emotion_stimuli_dict["ep02"]
+ emotion_stimuli_dict["ep03"]
)
Initialize base QA Prompt¶
In [ ]:
Copied!
from llama_index.core.prompts import RichPromptTemplate
qa_tmpl_str = """\
Context information is below.
---------------------
{{ context_str }}
---------------------
Given the context information and not prior knowledge, \
answer the query.
{{ emotion_str }}
Query: {{ query_str }}
Answer: \
"""
qa_tmpl = RichPromptTemplate(qa_tmpl_str)
from llama_index.core.prompts import RichPromptTemplate
qa_tmpl_str = """\
Context information is below.
---------------------
{{ context_str }}
---------------------
Given the context information and not prior knowledge, \
answer the query.
{{ emotion_str }}
Query: {{ query_str }}
Answer: \
"""
qa_tmpl = RichPromptTemplate(qa_tmpl_str)
Prepend emotions¶
In [ ]:
Copied!
QA_PROMPT_KEY = "response_synthesizer:text_qa_template"
QA_PROMPT_KEY = "response_synthesizer:text_qa_template"
In [ ]:
Copied!
async def run_and_evaluate(
query_engine, eval_qa_pairs, batch_runner, emotion_stimuli_str, qa_tmpl
):
"""Run and evaluate."""
new_qa_tmpl = qa_tmpl.partial_format(emotion_str=emotion_stimuli_str)
old_qa_tmpl = query_engine.get_prompts()[QA_PROMPT_KEY]
query_engine.update_prompts({QA_PROMPT_KEY: new_qa_tmpl})
avg_correctness = await get_correctness(
query_engine, eval_qa_pairs, batch_runner
)
query_engine.update_prompts({QA_PROMPT_KEY: old_qa_tmpl})
return avg_correctness
async def run_and_evaluate(
query_engine, eval_qa_pairs, batch_runner, emotion_stimuli_str, qa_tmpl
):
"""Run and evaluate."""
new_qa_tmpl = qa_tmpl.partial_format(emotion_str=emotion_stimuli_str)
old_qa_tmpl = query_engine.get_prompts()[QA_PROMPT_KEY]
query_engine.update_prompts({QA_PROMPT_KEY: new_qa_tmpl})
avg_correctness = await get_correctness(
query_engine, eval_qa_pairs, batch_runner
)
query_engine.update_prompts({QA_PROMPT_KEY: old_qa_tmpl})
return avg_correctness
In [ ]:
Copied!
# try out ep01
correctness_ep01 = await run_and_evaluate(
query_engine,
eval_dataset.qr_pairs,
batch_runner,
emotion_stimuli_dict["ep01"],
qa_tmpl,
)
# try out ep01
correctness_ep01 = await run_and_evaluate(
query_engine,
eval_dataset.qr_pairs,
batch_runner,
emotion_stimuli_dict["ep01"],
qa_tmpl,
)
100%|██████████| 60/60 [00:17<00:00, 3.43it/s] 100%|██████████| 60/60 [00:44<00:00, 1.34it/s]
In [ ]:
Copied!
print(correctness_ep01)
print(correctness_ep01)
4.283333333333333
In [ ]:
Copied!
# try out ep02
correctness_ep02 = await run_and_evaluate(
query_engine,
eval_dataset.qr_pairs,
batch_runner,
emotion_stimuli_dict["ep02"],
qa_tmpl,
)
# try out ep02
correctness_ep02 = await run_and_evaluate(
query_engine,
eval_dataset.qr_pairs,
batch_runner,
emotion_stimuli_dict["ep02"],
qa_tmpl,
)
100%|██████████| 60/60 [00:17<00:00, 3.49it/s] 100%|██████████| 60/60 [00:46<00:00, 1.28it/s]
In [ ]:
Copied!
print(correctness_ep02)
print(correctness_ep02)
4.466666666666667
In [ ]:
Copied!
# try none
correctness_base = await run_and_evaluate(
query_engine, eval_dataset.qr_pairs, batch_runner, "", qa_tmpl
)
# try none
correctness_base = await run_and_evaluate(
query_engine, eval_dataset.qr_pairs, batch_runner, "", qa_tmpl
)
100%|██████████| 60/60 [00:12<00:00, 4.74it/s] 100%|██████████| 60/60 [00:45<00:00, 1.32it/s]
In [ ]:
Copied!
print(correctness_base)
print(correctness_base)
4.533333333333333
From this, we can see that more emotional prompts seem to lead to better performance!