Google Cloud SQL for PostgreSQL - PostgresChatStore
¶
Cloud SQL is a fully managed relational database service that offers high performance, seamless integration, and impressive scalability. It offers MySQL, PostgreSQL, and SQL Server database engines. Extend your database application to build AI-powered experiences leveraging Cloud SQL's LlamaIndex integrations.
This notebook goes over how to use Cloud SQL for PostgreSQL
to store chat history with PostgresChatStore
class.
Learn more about the package on GitHub.
Before you begin¶
To run this notebook, you will need to do the following:
š¦ Library Installation¶
Install the integration library, llama-index-cloud-sql-pg
, and the library for the embedding service, llama-index-embeddings-vertex
.
%pip install --upgrade --quiet llama-index-cloud-sql-pg llama-index-llms-vertex llama-index
Colab only: Uncomment the following cell to restart the kernel or use the button to restart the kernel. For Vertex AI Workbench you can restart the terminal using the button on top.
# # Automatically restart kernel after installs so that your environment can access the new packages
# import IPython
# app = IPython.Application.instance()
# app.kernel.do_shutdown(True)
from google.colab import auth
auth.authenticate_user()
ā Set Your Google Cloud Project¶
Set your Google Cloud project so that you can leverage Google Cloud resources within this notebook.
If you don't know your project ID, try the following:
- Run
gcloud config list
. - Run
gcloud projects list
. - See the support page: Locate the project ID.
# @markdown Please fill in the value below with your Google Cloud project ID and then run the cell.
PROJECT_ID = "my-project-id" # @param {type:"string"}
# Set the project id
!gcloud config set project {PROJECT_ID}
Basic Usage¶
Set Cloud SQL database values¶
Find your database values, in the Cloud SQL Instances page.
# @title Set Your Values Here { display-mode: "form" }
REGION = "us-central1" # @param {type: "string"}
INSTANCE = "my-primary" # @param {type: "string"}
DATABASE = "my-database" # @param {type: "string"}
TABLE_NAME = "chat_store" # @param {type: "string"}
USER = "postgres" # @param {type: "string"}
PASSWORD = "my-password" # @param {type: "string"}
PostgresEngine Connection Pool¶
One of the requirements and arguments to establish Cloud SQL as a chat store is a PostgresEngine
object. The PostgresEngine
configures a connection pool to your Cloud SQL database, enabling successful connections from your application and following industry best practices.
To create a PostgresEngine
using PostgresEngine.from_instance()
you need to provide only 4 things:
project_id
: Project ID of the Google Cloud Project where the Cloud SQL instance is located.region
: Region where the Cloud SQL instance is located.instance
: The name of the Cloud SQL instance.database
: The name of the database to connect to on the Cloud SQL instance.
By default, IAM database authentication will be used as the method of database authentication. This library uses the IAM principal belonging to the Application Default Credentials (ADC) sourced from the envionment.
For more informatin on IAM database authentication please see:
Optionally, built-in database authentication using a username and password to access the Cloud SQL database can also be used. Just provide the optional user
and password
arguments to PostgresEngine.from_instance()
:
user
: Database user to use for built-in database authentication and loginpassword
: Database password to use for built-in database authentication and login.
Note: This tutorial demonstrates the async interface. All async methods have corresponding sync methods.
from llama_index_cloud_sql_pg import PostgresEngine
engine = await PostgresEngine.afrom_instance(
project_id=PROJECT_ID,
region=REGION,
instance=INSTANCE,
database=DATABASE,
user=USER,
password=PASSWORD,
)
Initialize a table¶
The PostgresChatStore
class requires a database table. The PostgresEngine
engine has a helper method ainit_chat_store_table()
that can be used to create a table with the proper schema for you.
await engine.ainit_chat_store_table(table_name=TABLE_NAME)
Optional Tip: š”¶
You can also specify a schema name by passing schema_name
wherever you pass table_name
.
SCHEMA_NAME = "my_schema"
await engine.ainit_chat_store_table(
table_name=TABLE_NAME,
schema_name=SCHEMA_NAME,
)
Initialize a default PostgresChatStore¶
from llama_index_cloud_sql_pg import PostgresChatStore
chat_store = await PostgresChatStore.create(
engine=engine,
table_name=TABLE_NAME,
# schema_name=SCHEMA_NAME
)
Create a ChatMemoryBuffer¶
The ChatMemoryBuffer
stores a history of recent chat messages, enabling the LLM to access relevant context from prior interactions.
By passing our chat store into the ChatMemoryBuffer
, it can automatically retrieve and update messages associated with a specific session ID or chat_store_key
.
from llama_index.core.memory import ChatMemoryBuffer
memory = ChatMemoryBuffer.from_defaults(
token_limit=3000,
chat_store=chat_store,
chat_store_key="user1",
)
Create an LLM class instance¶
You can use any of the LLMs compatible with LlamaIndex.
You may need to enable Vertex AI API to use Vertex
.
from llama_index.llms.vertex import Vertex
llm = Vertex(model="gemini-1.5-flash-002", project=PROJECT_ID)
Use the PostgresChatStore without a storage context¶
Create a Simple Chat Engine¶
from llama_index.core.chat_engine import SimpleChatEngine
chat_engine = SimpleChatEngine(memory=memory, llm=llm, prefix_messages=[])
response = chat_engine.chat("Hello")
print(response)
Use the PostgresChatStore with a storage context¶
Create a LlamaIndex Index
¶
An Index
is allows us to quickly retrieve relevant context for a user query.
They are used to build QueryEngines
and ChatEngines
.
For a list of indexes that can be built in LlamaIndex, see Index Guide.
A VectorStoreIndex
, can be built using the PostgresVectorStore
. See the detailed guide on how to use the PostgresVectorStore
to build an index here.
You can also use the PostgresDocumentStore
and PostgresIndexStore
to persist documents and index metadata.
These modules can be used to build other Indexes
.
For a detailed python notebook on this, see LlamaIndex Doc Store Guide.
Create and use the Chat Engine¶
# Create an `index` here
chat_engine = index.as_chat_engine(llm=llm, chat_mode="context", memory=memory) # type: ignore
response = chat_engine.chat("What did the author do?")