Skip to content

Function

FunctionTool #

Bases: AsyncBaseTool

Function Tool.

A tool that takes in a function.

Source code in llama-index-core/llama_index/core/tools/function_tool.py
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
class FunctionTool(AsyncBaseTool):
    """Function Tool.

    A tool that takes in a function.

    """

    def __init__(
        self,
        fn: Optional[Callable[..., Any]] = None,
        metadata: Optional[ToolMetadata] = None,
        async_fn: Optional[AsyncCallable] = None,
    ) -> None:
        if fn is None and async_fn is None:
            raise ValueError("fn or async_fn must be provided.")

        if fn is not None:
            self._fn = fn
        elif async_fn is not None:
            self._fn = async_to_sync(async_fn)

        if async_fn is not None:
            self._async_fn = async_fn
        elif fn is not None:
            self._async_fn = sync_to_async(self._fn)

        if metadata is None:
            raise ValueError("metadata must be provided.")

        self._metadata = metadata

    @classmethod
    def from_defaults(
        cls,
        fn: Optional[Callable[..., Any]] = None,
        name: Optional[str] = None,
        description: Optional[str] = None,
        return_direct: bool = False,
        fn_schema: Optional[Type[BaseModel]] = None,
        async_fn: Optional[AsyncCallable] = None,
        tool_metadata: Optional[ToolMetadata] = None,
    ) -> "FunctionTool":
        if tool_metadata is None:
            fn_to_parse = fn or async_fn
            assert fn_to_parse is not None, "fn or async_fn must be provided."
            name = name or fn_to_parse.__name__
            docstring = fn_to_parse.__doc__

            # Make a new function signature with FieldInfo defaults removed.
            # The information in FieldInfo is covered by fn_schema.
            fn_sig = inspect.signature(fn_to_parse)
            fn_sig = fn_sig.replace(
                parameters=[
                    param.replace(default=inspect.Parameter.empty)
                    if isinstance(param.default, FieldInfo)
                    else param
                    for param in fn_sig.parameters.values()
                ]
            )

            description = description or f"{name}{fn_sig}\n{docstring}"
            if fn_schema is None:
                fn_schema = create_schema_from_function(
                    f"{name}", fn_to_parse, additional_fields=None
                )
            tool_metadata = ToolMetadata(
                name=name,
                description=description,
                fn_schema=fn_schema,
                return_direct=return_direct,
            )
        return cls(fn=fn, metadata=tool_metadata, async_fn=async_fn)

    @property
    def metadata(self) -> ToolMetadata:
        """Metadata."""
        return self._metadata

    @property
    def fn(self) -> Callable[..., Any]:
        """Function."""
        return self._fn

    @property
    def async_fn(self) -> AsyncCallable:
        """Async function."""
        return self._async_fn

    def call(self, *args: Any, **kwargs: Any) -> ToolOutput:
        """Call."""
        tool_output = self._fn(*args, **kwargs)
        return ToolOutput(
            content=str(tool_output),
            tool_name=self.metadata.name,
            raw_input={"args": args, "kwargs": kwargs},
            raw_output=tool_output,
        )

    async def acall(self, *args: Any, **kwargs: Any) -> ToolOutput:
        """Call."""
        tool_output = await self._async_fn(*args, **kwargs)
        return ToolOutput(
            content=str(tool_output),
            tool_name=self.metadata.name,
            raw_input={"args": args, "kwargs": kwargs},
            raw_output=tool_output,
        )

    def to_langchain_tool(
        self,
        **langchain_tool_kwargs: Any,
    ) -> "Tool":
        """To langchain tool."""
        from llama_index.core.bridge.langchain import Tool

        langchain_tool_kwargs = self._process_langchain_tool_kwargs(
            langchain_tool_kwargs
        )
        return Tool.from_function(
            func=self.fn,
            coroutine=self.async_fn,
            **langchain_tool_kwargs,
        )

    def to_langchain_structured_tool(
        self,
        **langchain_tool_kwargs: Any,
    ) -> "StructuredTool":
        """To langchain structured tool."""
        from llama_index.core.bridge.langchain import StructuredTool

        langchain_tool_kwargs = self._process_langchain_tool_kwargs(
            langchain_tool_kwargs
        )
        return StructuredTool.from_function(
            func=self.fn,
            coroutine=self.async_fn,
            **langchain_tool_kwargs,
        )

metadata property #

metadata: ToolMetadata

Metadata.

fn property #

fn: Callable[..., Any]

Function.

async_fn property #

async_fn: AsyncCallable

Async function.

call #

call(*args: Any, **kwargs: Any) -> ToolOutput

Call.

Source code in llama-index-core/llama_index/core/tools/function_tool.py
123
124
125
126
127
128
129
130
131
def call(self, *args: Any, **kwargs: Any) -> ToolOutput:
    """Call."""
    tool_output = self._fn(*args, **kwargs)
    return ToolOutput(
        content=str(tool_output),
        tool_name=self.metadata.name,
        raw_input={"args": args, "kwargs": kwargs},
        raw_output=tool_output,
    )

acall async #

acall(*args: Any, **kwargs: Any) -> ToolOutput

Call.

Source code in llama-index-core/llama_index/core/tools/function_tool.py
133
134
135
136
137
138
139
140
141
async def acall(self, *args: Any, **kwargs: Any) -> ToolOutput:
    """Call."""
    tool_output = await self._async_fn(*args, **kwargs)
    return ToolOutput(
        content=str(tool_output),
        tool_name=self.metadata.name,
        raw_input={"args": args, "kwargs": kwargs},
        raw_output=tool_output,
    )

to_langchain_tool #

to_langchain_tool(**langchain_tool_kwargs: Any) -> Tool

To langchain tool.

Source code in llama-index-core/llama_index/core/tools/function_tool.py
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
def to_langchain_tool(
    self,
    **langchain_tool_kwargs: Any,
) -> "Tool":
    """To langchain tool."""
    from llama_index.core.bridge.langchain import Tool

    langchain_tool_kwargs = self._process_langchain_tool_kwargs(
        langchain_tool_kwargs
    )
    return Tool.from_function(
        func=self.fn,
        coroutine=self.async_fn,
        **langchain_tool_kwargs,
    )

to_langchain_structured_tool #

to_langchain_structured_tool(**langchain_tool_kwargs: Any) -> StructuredTool

To langchain structured tool.

Source code in llama-index-core/llama_index/core/tools/function_tool.py
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
def to_langchain_structured_tool(
    self,
    **langchain_tool_kwargs: Any,
) -> "StructuredTool":
    """To langchain structured tool."""
    from llama_index.core.bridge.langchain import StructuredTool

    langchain_tool_kwargs = self._process_langchain_tool_kwargs(
        langchain_tool_kwargs
    )
    return StructuredTool.from_function(
        func=self.fn,
        coroutine=self.async_fn,
        **langchain_tool_kwargs,
    )