Skip to content

Opensearch

OpensearchVectorStore #

Bases: BasePydanticVectorStore

Elasticsearch/Opensearch vector store.

Parameters:

Name Type Description Default
client OpensearchVectorClient

Vector index client to use for data insertion/querying.

required

Examples:

pip install llama-index-vector-stores-opensearch

from llama_index.vector_stores.opensearch import (
    OpensearchVectorStore,
    OpensearchVectorClient,
)

# http endpoint for your cluster (opensearch required for vector index usage)
endpoint = "http://localhost:9200"
# index to demonstrate the VectorStore impl
idx = "gpt-index-demo"

# OpensearchVectorClient stores text in this field by default
text_field = "content"
# OpensearchVectorClient stores embeddings in this field by default
embedding_field = "embedding"

# OpensearchVectorClient encapsulates logic for a
# single opensearch index with vector search enabled
client = OpensearchVectorClient(
    endpoint, idx, 1536, embedding_field=embedding_field, text_field=text_field
)

# initialize vector store
vector_store = OpensearchVectorStore(client)
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-opensearch/llama_index/vector_stores/opensearch/base.py
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
class OpensearchVectorStore(BasePydanticVectorStore):
    """
    Elasticsearch/Opensearch vector store.

    Args:
        client (OpensearchVectorClient): Vector index client to use
            for data insertion/querying.

    Examples:
        `pip install llama-index-vector-stores-opensearch`

        ```python
        from llama_index.vector_stores.opensearch import (
            OpensearchVectorStore,
            OpensearchVectorClient,
        )

        # http endpoint for your cluster (opensearch required for vector index usage)
        endpoint = "http://localhost:9200"
        # index to demonstrate the VectorStore impl
        idx = "gpt-index-demo"

        # OpensearchVectorClient stores text in this field by default
        text_field = "content"
        # OpensearchVectorClient stores embeddings in this field by default
        embedding_field = "embedding"

        # OpensearchVectorClient encapsulates logic for a
        # single opensearch index with vector search enabled
        client = OpensearchVectorClient(
            endpoint, idx, 1536, embedding_field=embedding_field, text_field=text_field
        )

        # initialize vector store
        vector_store = OpensearchVectorStore(client)
        ```

    """

    stores_text: bool = True
    _client: OpensearchVectorClient = PrivateAttr(default=None)

    def __init__(
        self,
        client: OpensearchVectorClient,
    ) -> None:
        """Initialize params."""
        super().__init__()
        self._client = client

    @property
    def client(self) -> Any:
        """Get client."""
        return self._client

    def add(
        self,
        nodes: List[BaseNode],
        **add_kwargs: Any,
    ) -> List[str]:
        """
        Add nodes to index.

        Args:
            nodes: List[BaseNode]: list of nodes with embeddings.

        """
        self._client.index_results(nodes)
        return [result.node_id for result in nodes]

    async def async_add(
        self,
        nodes: List[BaseNode],
        **add_kwargs: Any,
    ) -> List[str]:
        """
        Async add nodes to index.

        Args:
            nodes: List[BaseNode]: list of nodes with embeddings.

        """
        await self._client.aindex_results(nodes)
        return [result.node_id for result in nodes]

    def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
        """
        Delete nodes using with ref_doc_id.

        Args:
            ref_doc_id (str): The doc_id of the document to delete.

        """
        self._client.delete_by_doc_id(ref_doc_id)

    async def adelete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
        """
        Async delete nodes using with ref_doc_id.

        Args:
            ref_doc_id (str): The doc_id of the document to delete.

        """
        await self._client.adelete_by_doc_id(ref_doc_id)

    def delete_nodes(
        self,
        node_ids: Optional[List[str]] = None,
        filters: Optional[MetadataFilters] = None,
        **delete_kwargs: Any,
    ) -> None:
        """
        Deletes nodes async.

        Args:
            node_ids (Optional[List[str]], optional): IDs of nodes to delete. Defaults to None.
            filters (Optional[MetadataFilters], optional): Metadata filters. Defaults to None.

        """
        self._client.delete_nodes(node_ids, filters, **delete_kwargs)

    async def adelete_nodes(
        self,
        node_ids: Optional[List[str]] = None,
        filters: Optional[MetadataFilters] = None,
        **delete_kwargs: Any,
    ) -> None:
        """
        Async deletes nodes async.

        Args:
            node_ids (Optional[List[str]], optional): IDs of nodes to delete. Defaults to None.
            filters (Optional[MetadataFilters], optional): Metadata filters. Defaults to None.

        """
        await self._client.adelete_nodes(node_ids, filters, **delete_kwargs)

    def clear(self) -> None:
        """Clears index."""
        self._client.clear()

    async def aclear(self) -> None:
        """Async clears index."""
        await self._client.aclear()

    def query(self, query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult:
        """
        Query index for top k most similar nodes.

        Args:
            query (VectorStoreQuery): Store query object.

        """
        query_embedding = cast(List[float], query.query_embedding)

        return self._client.query(
            query.mode,
            query.query_str,
            query_embedding,
            query.similarity_top_k,
            filters=query.filters,
        )

    async def aquery(
        self, query: VectorStoreQuery, **kwargs: Any
    ) -> VectorStoreQueryResult:
        """
        Async query index for top k most similar nodes.

        Args:
            query (VectorStoreQuery): Store query object.

        """
        query_embedding = cast(List[float], query.query_embedding)

        return await self._client.aquery(
            query.mode,
            query.query_str,
            query_embedding,
            query.similarity_top_k,
            filters=query.filters,
        )

client property #

client: Any

Get client.

add #

add(nodes: List[BaseNode], **add_kwargs: Any) -> List[str]

Add nodes to index.

Parameters:

Name Type Description Default
nodes List[BaseNode]

List[BaseNode]: list of nodes with embeddings.

required
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-opensearch/llama_index/vector_stores/opensearch/base.py
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
def add(
    self,
    nodes: List[BaseNode],
    **add_kwargs: Any,
) -> List[str]:
    """
    Add nodes to index.

    Args:
        nodes: List[BaseNode]: list of nodes with embeddings.

    """
    self._client.index_results(nodes)
    return [result.node_id for result in nodes]

async_add async #

async_add(nodes: List[BaseNode], **add_kwargs: Any) -> List[str]

Async add nodes to index.

Parameters:

Name Type Description Default
nodes List[BaseNode]

List[BaseNode]: list of nodes with embeddings.

required
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-opensearch/llama_index/vector_stores/opensearch/base.py
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
async def async_add(
    self,
    nodes: List[BaseNode],
    **add_kwargs: Any,
) -> List[str]:
    """
    Async add nodes to index.

    Args:
        nodes: List[BaseNode]: list of nodes with embeddings.

    """
    await self._client.aindex_results(nodes)
    return [result.node_id for result in nodes]

delete #

delete(ref_doc_id: str, **delete_kwargs: Any) -> None

Delete nodes using with ref_doc_id.

Parameters:

Name Type Description Default
ref_doc_id str

The doc_id of the document to delete.

required
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-opensearch/llama_index/vector_stores/opensearch/base.py
1045
1046
1047
1048
1049
1050
1051
1052
1053
def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
    """
    Delete nodes using with ref_doc_id.

    Args:
        ref_doc_id (str): The doc_id of the document to delete.

    """
    self._client.delete_by_doc_id(ref_doc_id)

adelete async #

adelete(ref_doc_id: str, **delete_kwargs: Any) -> None

Async delete nodes using with ref_doc_id.

Parameters:

Name Type Description Default
ref_doc_id str

The doc_id of the document to delete.

required
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-opensearch/llama_index/vector_stores/opensearch/base.py
1055
1056
1057
1058
1059
1060
1061
1062
1063
async def adelete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
    """
    Async delete nodes using with ref_doc_id.

    Args:
        ref_doc_id (str): The doc_id of the document to delete.

    """
    await self._client.adelete_by_doc_id(ref_doc_id)

delete_nodes #

delete_nodes(node_ids: Optional[List[str]] = None, filters: Optional[MetadataFilters] = None, **delete_kwargs: Any) -> None

Deletes nodes async.

Parameters:

Name Type Description Default
node_ids Optional[List[str]]

IDs of nodes to delete. Defaults to None.

None
filters Optional[MetadataFilters]

Metadata filters. Defaults to None.

None
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-opensearch/llama_index/vector_stores/opensearch/base.py
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
def delete_nodes(
    self,
    node_ids: Optional[List[str]] = None,
    filters: Optional[MetadataFilters] = None,
    **delete_kwargs: Any,
) -> None:
    """
    Deletes nodes async.

    Args:
        node_ids (Optional[List[str]], optional): IDs of nodes to delete. Defaults to None.
        filters (Optional[MetadataFilters], optional): Metadata filters. Defaults to None.

    """
    self._client.delete_nodes(node_ids, filters, **delete_kwargs)

adelete_nodes async #

adelete_nodes(node_ids: Optional[List[str]] = None, filters: Optional[MetadataFilters] = None, **delete_kwargs: Any) -> None

Async deletes nodes async.

Parameters:

Name Type Description Default
node_ids Optional[List[str]]

IDs of nodes to delete. Defaults to None.

None
filters Optional[MetadataFilters]

Metadata filters. Defaults to None.

None
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-opensearch/llama_index/vector_stores/opensearch/base.py
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
async def adelete_nodes(
    self,
    node_ids: Optional[List[str]] = None,
    filters: Optional[MetadataFilters] = None,
    **delete_kwargs: Any,
) -> None:
    """
    Async deletes nodes async.

    Args:
        node_ids (Optional[List[str]], optional): IDs of nodes to delete. Defaults to None.
        filters (Optional[MetadataFilters], optional): Metadata filters. Defaults to None.

    """
    await self._client.adelete_nodes(node_ids, filters, **delete_kwargs)

clear #

clear() -> None

Clears index.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-opensearch/llama_index/vector_stores/opensearch/base.py
1097
1098
1099
def clear(self) -> None:
    """Clears index."""
    self._client.clear()

aclear async #

aclear() -> None

Async clears index.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-opensearch/llama_index/vector_stores/opensearch/base.py
1101
1102
1103
async def aclear(self) -> None:
    """Async clears index."""
    await self._client.aclear()

query #

query(query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult

Query index for top k most similar nodes.

Parameters:

Name Type Description Default
query VectorStoreQuery

Store query object.

required
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-opensearch/llama_index/vector_stores/opensearch/base.py
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
def query(self, query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult:
    """
    Query index for top k most similar nodes.

    Args:
        query (VectorStoreQuery): Store query object.

    """
    query_embedding = cast(List[float], query.query_embedding)

    return self._client.query(
        query.mode,
        query.query_str,
        query_embedding,
        query.similarity_top_k,
        filters=query.filters,
    )

aquery async #

aquery(query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult

Async query index for top k most similar nodes.

Parameters:

Name Type Description Default
query VectorStoreQuery

Store query object.

required
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-opensearch/llama_index/vector_stores/opensearch/base.py
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
async def aquery(
    self, query: VectorStoreQuery, **kwargs: Any
) -> VectorStoreQueryResult:
    """
    Async query index for top k most similar nodes.

    Args:
        query (VectorStoreQuery): Store query object.

    """
    query_embedding = cast(List[float], query.query_embedding)

    return await self._client.aquery(
        query.mode,
        query.query_str,
        query_embedding,
        query.similarity_top_k,
        filters=query.filters,
    )