Vectorize
Vectorize retrievers.
VectorizeRetriever #
Bases: BaseRetriever
Vectorize retriever.
Setup
Install package llama-index-vectorize
.. code-block:: bash
pip install -U llama-index-retrievers-vectorize
Instantiate
.. code-block:: python
from llama_index.retrievers.vectorize import VectorizeRetriever
retriever = VectorizeRetriever(
api_token="xxxxx", "organization"="1234", "pipeline_id"="5678"
)
Usage
.. code-block:: python
query = "what year was breath of the wild released?"
retriever.retrieve(query)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
api_token
|
str
|
The Vectorize API token. |
required |
environment
|
Literal['prod', 'dev', 'local', 'staging']
|
The Vectorize API environment (prod, dev, local, staging). Defaults to prod. |
'prod'
|
organization
|
str | None
|
The Vectorize organization. |
None
|
pipeline_id
|
str | None
|
The Vectorize pipeline ID. |
None
|
num_results
|
int
|
The number of documents to return. |
5
|
rerank
|
bool
|
Whether to rerank the retrieved documents. |
False
|
metadata_filters
|
list[dict[str, Any]] | None
|
The metadata filters to apply when retrieving documents. |
None
|
callback_manager
|
CallbackManager | None
|
The callback manager to use for callbacks. |
None
|
verbose
|
bool
|
Whether to enable verbose logging. |
False
|
Source code in llama-index-integrations/retrievers/llama-index-retrievers-vectorize/llama_index/retrievers/vectorize/base.py
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
|