Vector
VectorIndexRetriever #
Bases: BaseRetriever
Vector index retriever.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
index
|
VectorStoreIndex
|
vector store index. |
required |
similarity_top_k
|
int
|
number of top k results to return. |
DEFAULT_SIMILARITY_TOP_K
|
vector_store_query_mode
|
str
|
vector store query mode See reference for VectorStoreQueryMode for full list of supported modes. |
DEFAULT
|
filters
|
Optional[MetadataFilters]
|
metadata filters, defaults to None |
None
|
alpha
|
float
|
weight for sparse/dense retrieval, only used for hybrid query mode. |
None
|
doc_ids
|
Optional[List[str]]
|
list of documents to constrain search. |
None
|
vector_store_kwargs
|
dict
|
Additional vector store specific kwargs to pass through to the vector store at query time. |
required |
Source code in llama-index-core/llama_index/core/indices/vector_store/retrievers/retriever.py
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
|
VectorIndexAutoRetriever #
Bases: BaseAutoRetriever
Vector store auto retriever.
A retriever for vector store index that uses an LLM to automatically set vector store query parameters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
index
|
VectorStoreIndex
|
vector store index |
required |
vector_store_info
|
VectorStoreInfo
|
additional information about vector store content and supported metadata filters. The natural language description is used by an LLM to automatically set vector store query parameters. |
required |
prompt_template_str
|
Optional[str]
|
custom prompt template string for LLM. Uses default template string if None. |
None
|
similarity_top_k
|
int
|
number of top k results to return. |
DEFAULT_SIMILARITY_TOP_K
|
empty_query_top_k
|
Optional[int]
|
number of top k results to return if the inferred query string is blank (uses metadata filters only). Can be set to None, which would use the similarity_top_k instead. By default, set to 10. |
10
|
max_top_k
|
int
|
the maximum top_k allowed. The top_k set by LLM or similarity_top_k will be clamped to this value. |
10
|
vector_store_query_mode
|
str
|
vector store query mode See reference for VectorStoreQueryMode for full list of supported modes. |
DEFAULT
|
default_empty_query_vector
|
Optional[List[float]]
|
default empty query vector. Defaults to None. If not None, then this vector will be used as the query vector if the query is empty. |
None
|
callback_manager
|
Optional[CallbackManager]
|
callback manager |
None
|
verbose
|
bool
|
verbose mode |
False
|
Source code in llama-index-core/llama_index/core/indices/vector_store/retrievers/auto_retriever/auto_retriever.py
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
|