Skip to content

Voyageai rerank

VoyageAIRerank #

Bases: BaseNodePostprocessor

Source code in llama-index-integrations/postprocessor/llama-index-postprocessor-voyageai-rerank/llama_index/postprocessor/voyageai_rerank/base.py
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
class VoyageAIRerank(BaseNodePostprocessor):
    model: str = Field(description="Name of the model to use.")
    top_n: Optional[int] = Field(
        description="The number of most relevant documents to return. If not specified, the reranking results of all documents will be returned.",
        default=None,
    )
    truncation: bool = Field(
        description="Whether to truncate the input to satisfy the 'context length limit' on the query and the documents.",
        default=True,
    )

    _client: Any = PrivateAttr()

    def __init__(
        self,
        model: str,
        api_key: Optional[str] = None,
        top_n: Optional[int] = None,
        truncation: bool = True,
        # deprecated
        top_k: Optional[int] = None,
    ):
        try:
            from voyageai import Client
        except ImportError:
            raise ImportError(
                "Cannot import voyageai package, please `pip install voyageai`."
            )

        top_n = top_n or top_k
        super().__init__(top_n=top_n, model=model, truncation=truncation)
        self._client = Client(api_key=api_key)

    @classmethod
    def class_name(cls) -> str:
        return "VoyageAIRerank"

    def _postprocess_nodes(
        self,
        nodes: List[NodeWithScore],
        query_bundle: Optional[QueryBundle] = None,
    ) -> List[NodeWithScore]:
        dispatcher.event(
            ReRankStartEvent(
                query=query_bundle,
                nodes=nodes,
                top_n=self.top_n or len(nodes),
                model_name=self.model,
            )
        )

        if query_bundle is None:
            raise ValueError("Missing query bundle in extra info.")
        if len(nodes) == 0:
            return []

        with self.callback_manager.event(
            CBEventType.RERANKING,
            payload={
                EventPayload.NODES: nodes,
                EventPayload.MODEL_NAME: self.model,
                EventPayload.QUERY_STR: query_bundle.query_str,
                EventPayload.TOP_K: self.top_n or len(nodes),
            },
        ) as event:
            texts = [
                node.node.get_content(metadata_mode=MetadataMode.EMBED)
                for node in nodes
            ]
            results = self._client.rerank(
                model=self.model,
                top_k=self.top_n,
                query=query_bundle.query_str,
                documents=texts,
                truncation=self.truncation,
            ).results

            new_nodes = []
            for result in results:
                new_node_with_score = NodeWithScore(
                    node=nodes[result.index].node, score=result.relevance_score
                )
                new_nodes.append(new_node_with_score)
            event.on_end(payload={EventPayload.NODES: new_nodes})

        dispatcher.event(ReRankEndEvent(nodes=new_nodes))
        return new_nodes