Skip to content

Embedding recency

Node PostProcessor module.

EmbeddingRecencyPostprocessor #

Bases: BaseNodePostprocessor

Embedding Recency post-processor.

Parameters:

Name Type Description Default
embed_model BaseEmbedding
<dynamic>
date_key str
'date'
similarity_cutoff float
0.7
query_embedding_tmpl str
'The current document is provided.\n----------------\n{context_str}\n----------------\nGiven the document, we wish to find documents that contain \nsimilar context. Note that these documents are older than the current document, meaning that certain details may be changed. \nHowever, the high-level context should be similar.\n'
Source code in llama-index-core/llama_index/core/postprocessor/node_recency.py
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
class EmbeddingRecencyPostprocessor(BaseNodePostprocessor):
    """Embedding Recency post-processor."""

    embed_model: SerializeAsAny[BaseEmbedding] = Field(
        default_factory=lambda: Settings.embed_model
    )
    date_key: str = "date"
    similarity_cutoff: float = Field(default=0.7)
    query_embedding_tmpl: str = Field(default=DEFAULT_QUERY_EMBEDDING_TMPL)

    @classmethod
    def class_name(cls) -> str:
        return "EmbeddingRecencyPostprocessor"

    def _postprocess_nodes(
        self,
        nodes: List[NodeWithScore],
        query_bundle: Optional[QueryBundle] = None,
    ) -> List[NodeWithScore]:
        """Postprocess nodes."""
        try:
            import pandas as pd
        except ImportError:
            raise ImportError(
                "pandas is required for this function. Please install it with `pip install pandas`."
            )

        if query_bundle is None:
            raise ValueError("Missing query bundle in extra info.")

        # sort nodes by date
        node_dates = pd.to_datetime(
            [node.node.metadata[self.date_key] for node in nodes]
        )
        sorted_node_idxs = np.flip(node_dates.argsort())
        sorted_nodes: List[NodeWithScore] = [nodes[idx] for idx in sorted_node_idxs]

        # get embeddings for each node
        texts = [node.get_content(metadata_mode=MetadataMode.EMBED) for node in nodes]
        text_embeddings = self.embed_model.get_text_embedding_batch(texts=texts)

        node_ids_to_skip: Set[str] = set()
        for idx, node in enumerate(sorted_nodes):
            if node.node.node_id in node_ids_to_skip:
                continue
            # get query embedding for the "query" node
            # NOTE: not the same as the text embedding because
            # we want to optimize for retrieval results

            query_text = self.query_embedding_tmpl.format(
                context_str=node.node.get_content(metadata_mode=MetadataMode.EMBED),
            )
            query_embedding = self.embed_model.get_query_embedding(query_text)

            for idx2 in range(idx + 1, len(sorted_nodes)):
                if sorted_nodes[idx2].node.node_id in node_ids_to_skip:
                    continue
                node2 = sorted_nodes[idx2]
                if (
                    np.dot(query_embedding, text_embeddings[idx2])
                    > self.similarity_cutoff
                ):
                    node_ids_to_skip.add(node2.node.node_id)

        return [
            node for node in sorted_nodes if node.node.node_id not in node_ids_to_skip
        ]