Skip to content

Index

Node parser interface.

NodeParser #

Bases: TransformComponent, ABC

Base interface for node parser.

Parameters:

Name Type Description Default
include_metadata bool

Whether or not to consider metadata when splitting.

True
include_prev_next_rel bool

Include prev/next node relationships.

True
callback_manager CallbackManager
<llama_index.core.callbacks.base.CallbackManager object at 0x7f40d819c770>
id_func Annotated[Callable, FieldInfo, BeforeValidator, WithJsonSchema, WithJsonSchema, PlainSerializer] | None

Function to generate node IDs.

None
Source code in llama-index-core/llama_index/core/node_parser/interface.py
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
class NodeParser(TransformComponent, ABC):
    """Base interface for node parser."""

    model_config = ConfigDict(arbitrary_types_allowed=True)
    include_metadata: bool = Field(
        default=True, description="Whether or not to consider metadata when splitting."
    )
    include_prev_next_rel: bool = Field(
        default=True, description="Include prev/next node relationships."
    )
    callback_manager: CallbackManager = Field(
        default_factory=lambda: CallbackManager([]), exclude=True
    )
    id_func: Optional[IdFuncCallable] = Field(
        default=None,
        description="Function to generate node IDs.",
    )

    @abstractmethod
    def _parse_nodes(
        self,
        nodes: Sequence[BaseNode],
        show_progress: bool = False,
        **kwargs: Any,
    ) -> List[BaseNode]:
        ...

    async def _aparse_nodes(
        self,
        nodes: Sequence[BaseNode],
        show_progress: bool = False,
        **kwargs: Any,
    ) -> List[BaseNode]:
        return self._parse_nodes(nodes, show_progress=show_progress, **kwargs)

    def _postprocess_parsed_nodes(
        self, nodes: List[BaseNode], parent_doc_map: Dict[str, Document]
    ) -> List[BaseNode]:
        for i, node in enumerate(nodes):
            parent_doc = parent_doc_map.get(node.ref_doc_id or "", None)
            parent_node = node.source_node

            if parent_doc is not None:
                if parent_doc.source_node is not None:
                    node.relationships.update(
                        {
                            NodeRelationship.SOURCE: parent_doc.source_node,
                        }
                    )
                start_char_idx = parent_doc.text.find(
                    node.get_content(metadata_mode=MetadataMode.NONE)
                )

                # update start/end char idx
                if start_char_idx >= 0 and isinstance(node, TextNode):
                    node.start_char_idx = start_char_idx
                    node.end_char_idx = start_char_idx + len(
                        node.get_content(metadata_mode=MetadataMode.NONE)
                    )

                # update metadata
                if self.include_metadata:
                    # Merge parent_doc.metadata into nodes.metadata, giving preference to node's values
                    node.metadata = {**parent_doc.metadata, **node.metadata}

            if parent_node is not None:
                if self.include_metadata:
                    parent_metadata = parent_node.metadata

                    combined_metadata = {**parent_metadata, **node.metadata}

                    # Merge parent_node.metadata into nodes.metadata, giving preference to node's values
                    node.metadata.update(combined_metadata)

            if self.include_prev_next_rel:
                # establish prev/next relationships if nodes share the same source_node
                if (
                    i > 0
                    and node.source_node
                    and nodes[i - 1].source_node
                    and nodes[i - 1].source_node.node_id == node.source_node.node_id  # type: ignore
                ):
                    node.relationships[NodeRelationship.PREVIOUS] = nodes[
                        i - 1
                    ].as_related_node_info()
                if (
                    i < len(nodes) - 1
                    and node.source_node
                    and nodes[i + 1].source_node
                    and nodes[i + 1].source_node.node_id == node.source_node.node_id  # type: ignore
                ):
                    node.relationships[NodeRelationship.NEXT] = nodes[
                        i + 1
                    ].as_related_node_info()

        return nodes

    def get_nodes_from_documents(
        self,
        documents: Sequence[Document],
        show_progress: bool = False,
        **kwargs: Any,
    ) -> List[BaseNode]:
        """Parse documents into nodes.

        Args:
            documents (Sequence[Document]): documents to parse
            show_progress (bool): whether to show progress bar

        """
        doc_id_to_document = {doc.id_: doc for doc in documents}

        with self.callback_manager.event(
            CBEventType.NODE_PARSING, payload={EventPayload.DOCUMENTS: documents}
        ) as event:
            nodes = self._parse_nodes(documents, show_progress=show_progress, **kwargs)
            nodes = self._postprocess_parsed_nodes(nodes, doc_id_to_document)

            event.on_end({EventPayload.NODES: nodes})

        return nodes

    async def aget_nodes_from_documents(
        self,
        documents: Sequence[Document],
        show_progress: bool = False,
        **kwargs: Any,
    ) -> List[BaseNode]:
        doc_id_to_document = {doc.id_: doc for doc in documents}

        with self.callback_manager.event(
            CBEventType.NODE_PARSING, payload={EventPayload.DOCUMENTS: documents}
        ) as event:
            nodes = await self._aparse_nodes(
                documents, show_progress=show_progress, **kwargs
            )
            nodes = self._postprocess_parsed_nodes(nodes, doc_id_to_document)

            event.on_end({EventPayload.NODES: nodes})

        return nodes

    def __call__(self, nodes: Sequence[BaseNode], **kwargs: Any) -> List[BaseNode]:
        return self.get_nodes_from_documents(nodes, **kwargs)  # type: ignore

    async def acall(self, nodes: Sequence[BaseNode], **kwargs: Any) -> List[BaseNode]:
        return await self.aget_nodes_from_documents(nodes, **kwargs)  # type: ignore

get_nodes_from_documents #

get_nodes_from_documents(documents: Sequence[Document], show_progress: bool = False, **kwargs: Any) -> List[BaseNode]

Parse documents into nodes.

Parameters:

Name Type Description Default
documents Sequence[Document]

documents to parse

required
show_progress bool

whether to show progress bar

False
Source code in llama-index-core/llama_index/core/node_parser/interface.py
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
def get_nodes_from_documents(
    self,
    documents: Sequence[Document],
    show_progress: bool = False,
    **kwargs: Any,
) -> List[BaseNode]:
    """Parse documents into nodes.

    Args:
        documents (Sequence[Document]): documents to parse
        show_progress (bool): whether to show progress bar

    """
    doc_id_to_document = {doc.id_: doc for doc in documents}

    with self.callback_manager.event(
        CBEventType.NODE_PARSING, payload={EventPayload.DOCUMENTS: documents}
    ) as event:
        nodes = self._parse_nodes(documents, show_progress=show_progress, **kwargs)
        nodes = self._postprocess_parsed_nodes(nodes, doc_id_to_document)

        event.on_end({EventPayload.NODES: nodes})

    return nodes

TextSplitter #

Bases: NodeParser

Source code in llama-index-core/llama_index/core/node_parser/interface.py
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
class TextSplitter(NodeParser):
    @abstractmethod
    def split_text(self, text: str) -> List[str]:
        ...

    def split_texts(self, texts: List[str]) -> List[str]:
        nested_texts = [self.split_text(text) for text in texts]
        return [item for sublist in nested_texts for item in sublist]

    def _parse_nodes(
        self, nodes: Sequence[BaseNode], show_progress: bool = False, **kwargs: Any
    ) -> List[BaseNode]:
        all_nodes: List[BaseNode] = []
        nodes_with_progress = get_tqdm_iterable(nodes, show_progress, "Parsing nodes")
        for node in nodes_with_progress:
            splits = self.split_text(node.get_content())

            all_nodes.extend(
                build_nodes_from_splits(splits, node, id_func=self.id_func)
            )

        return all_nodes

MetadataAwareTextSplitter #

Bases: TextSplitter

Source code in llama-index-core/llama_index/core/node_parser/interface.py
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
class MetadataAwareTextSplitter(TextSplitter):
    @abstractmethod
    def split_text_metadata_aware(self, text: str, metadata_str: str) -> List[str]:
        ...

    def split_texts_metadata_aware(
        self, texts: List[str], metadata_strs: List[str]
    ) -> List[str]:
        if len(texts) != len(metadata_strs):
            raise ValueError("Texts and metadata_strs must have the same length")
        nested_texts = [
            self.split_text_metadata_aware(text, metadata)
            for text, metadata in zip(texts, metadata_strs)
        ]
        return [item for sublist in nested_texts for item in sublist]

    def _get_metadata_str(self, node: BaseNode) -> str:
        """Helper function to get the proper metadata str for splitting."""
        embed_metadata_str = node.get_metadata_str(mode=MetadataMode.EMBED)
        llm_metadata_str = node.get_metadata_str(mode=MetadataMode.LLM)

        # use the longest metadata str for splitting
        if len(embed_metadata_str) > len(llm_metadata_str):
            metadata_str = embed_metadata_str
        else:
            metadata_str = llm_metadata_str

        return metadata_str

    def _parse_nodes(
        self, nodes: Sequence[BaseNode], show_progress: bool = False, **kwargs: Any
    ) -> List[BaseNode]:
        all_nodes: List[BaseNode] = []
        nodes_with_progress = get_tqdm_iterable(nodes, show_progress, "Parsing nodes")

        for node in nodes_with_progress:
            metadata_str = self._get_metadata_str(node)
            splits = self.split_text_metadata_aware(
                node.get_content(metadata_mode=MetadataMode.NONE),
                metadata_str=metadata_str,
            )
            all_nodes.extend(
                build_nodes_from_splits(splits, node, id_func=self.id_func)
            )

        return all_nodes