Skip to content

Index

MultiModalLLMMetadata #

Bases: BaseModel

Parameters:

Name Type Description Default
context_window int | None

Total number of tokens the model can be input when generating a response.

3900
num_output int | None

Number of tokens the model can output when generating a response.

256
num_input_files int | None

Number of input files the model can take when generating a response.

10
is_function_calling_model bool | None

Set True if the model supports function calling messages, similar to OpenAI's function calling API. For example, converting 'Email Anya to see if she wants to get coffee next Friday' to a function call like send_email(to: string, body: string).

False
model_name str

The model's name used for logging, testing, and sanity checking. For some models this can be automatically discerned. For other models, like locally loaded models, this must be manually specified.

'unknown'
is_chat_model bool

Set True if the model exposes a chat interface (i.e. can be passed a sequence of messages, rather than text), like OpenAI's /v1/chat/completions endpoint.

False
Source code in llama-index-core/llama_index/core/multi_modal_llms/base.py
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
class MultiModalLLMMetadata(BaseModel):
    model_config = ConfigDict(protected_namespaces=("pydantic_model_",))
    context_window: Optional[int] = Field(
        default=DEFAULT_CONTEXT_WINDOW,
        description=(
            "Total number of tokens the model can be input when generating a response."
        ),
    )
    num_output: Optional[int] = Field(
        default=DEFAULT_NUM_OUTPUTS,
        description="Number of tokens the model can output when generating a response.",
    )
    num_input_files: Optional[int] = Field(
        default=DEFAULT_NUM_INPUT_FILES,
        description="Number of input files the model can take when generating a response.",
    )
    is_function_calling_model: Optional[bool] = Field(
        default=False,
        # SEE: https://openai.com/blog/function-calling-and-other-api-updates
        description=(
            "Set True if the model supports function calling messages, similar to"
            " OpenAI's function calling API. For example, converting 'Email Anya to"
            " see if she wants to get coffee next Friday' to a function call like"
            " `send_email(to: string, body: string)`."
        ),
    )
    model_name: str = Field(
        default="unknown",
        description=(
            "The model's name used for logging, testing, and sanity checking. For some"
            " models this can be automatically discerned. For other models, like"
            " locally loaded models, this must be manually specified."
        ),
    )

    is_chat_model: bool = Field(
        default=False,
        description=(
            "Set True if the model exposes a chat interface (i.e. can be passed a"
            " sequence of messages, rather than text), like OpenAI's"
            " /v1/chat/completions endpoint."
        ),
    )

MultiModalLLM #

Bases: ChainableMixin, BaseComponent, DispatcherSpanMixin

Multi-Modal LLM interface.

Parameters:

Name Type Description Default
callback_manager CallbackManager

Callback manager that handles callbacks for events within LlamaIndex.

The callback manager provides a way to call handlers on event starts/ends.

Additionally, the callback manager traces the current stack of events. It does this by using a few key attributes. - trace_stack - The current stack of events that have not ended yet. When an event ends, it's removed from the stack. Since this is a contextvar, it is unique to each thread/task. - trace_map - A mapping of event ids to their children events. On the start of events, the bottom of the trace stack is used as the current parent event for the trace map. - trace_id - A simple name for the current trace, usually denoting the entrypoint (query, index_construction, insert, etc.)

Args: handlers (List[BaseCallbackHandler]): list of handlers to use.

Usage: with callback_manager.event(CBEventType.QUERY) as event: event.on_start(payload={key, val}) ... event.on_end(payload={key, val})

<dynamic>
Source code in llama-index-core/llama_index/core/multi_modal_llms/base.py
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
class MultiModalLLM(ChainableMixin, BaseComponent, DispatcherSpanMixin):
    """Multi-Modal LLM interface."""

    model_config = ConfigDict(arbitrary_types_allowed=True)
    callback_manager: CallbackManager = Field(
        default_factory=CallbackManager, exclude=True
    )

    def __init__(self, *args: Any, **kwargs: Any) -> None:
        # Help static checkers understand this class hierarchy
        super().__init__(*args, **kwargs)

    @property
    @abstractmethod
    def metadata(self) -> MultiModalLLMMetadata:
        """Multi-Modal LLM metadata."""

    @abstractmethod
    def complete(
        self, prompt: str, image_documents: List[ImageNode], **kwargs: Any
    ) -> CompletionResponse:
        """Completion endpoint for Multi-Modal LLM."""

    @abstractmethod
    def stream_complete(
        self, prompt: str, image_documents: List[ImageNode], **kwargs: Any
    ) -> CompletionResponseGen:
        """Streaming completion endpoint for Multi-Modal LLM."""

    @abstractmethod
    def chat(
        self,
        messages: Sequence[ChatMessage],
        **kwargs: Any,
    ) -> ChatResponse:
        """Chat endpoint for Multi-Modal LLM."""

    @abstractmethod
    def stream_chat(
        self,
        messages: Sequence[ChatMessage],
        **kwargs: Any,
    ) -> ChatResponseGen:
        """Stream chat endpoint for Multi-Modal LLM."""

    # ===== Async Endpoints =====

    @abstractmethod
    async def acomplete(
        self, prompt: str, image_documents: List[ImageNode], **kwargs: Any
    ) -> CompletionResponse:
        """Async completion endpoint for Multi-Modal LLM."""

    @abstractmethod
    async def astream_complete(
        self, prompt: str, image_documents: List[ImageNode], **kwargs: Any
    ) -> CompletionResponseAsyncGen:
        """Async streaming completion endpoint for Multi-Modal LLM."""

    @abstractmethod
    async def achat(
        self,
        messages: Sequence[ChatMessage],
        **kwargs: Any,
    ) -> ChatResponse:
        """Async chat endpoint for Multi-Modal LLM."""

    @abstractmethod
    async def astream_chat(
        self,
        messages: Sequence[ChatMessage],
        **kwargs: Any,
    ) -> ChatResponseAsyncGen:
        """Async streaming chat endpoint for Multi-Modal LLM."""

    def _as_query_component(self, **kwargs: Any) -> QueryComponent:
        """Return query component."""
        if self.metadata.is_chat_model:
            # TODO: we don't have a separate chat component
            return MultiModalCompleteComponent(multi_modal_llm=self, **kwargs)
        else:
            return MultiModalCompleteComponent(multi_modal_llm=self, **kwargs)

    def __init_subclass__(cls, **kwargs: Any) -> None:
        """
        The callback decorators installs events, so they must be applied before
        the span decorators, otherwise the spans wouldn't contain the events.
        """
        for attr in (
            "complete",
            "acomplete",
            "stream_complete",
            "astream_complete",
            "chat",
            "achat",
            "stream_chat",
            "astream_chat",
        ):
            if callable(method := cls.__dict__.get(attr)):
                if attr.endswith("chat"):
                    setattr(cls, attr, llm_chat_callback()(method))
                else:
                    setattr(cls, attr, llm_completion_callback()(method))
        super().__init_subclass__(**kwargs)

metadata abstractmethod property #

Multi-Modal LLM metadata.

complete abstractmethod #

complete(prompt: str, image_documents: List[ImageNode], **kwargs: Any) -> CompletionResponse

Completion endpoint for Multi-Modal LLM.

Source code in llama-index-core/llama_index/core/multi_modal_llms/base.py
 98
 99
100
101
102
@abstractmethod
def complete(
    self, prompt: str, image_documents: List[ImageNode], **kwargs: Any
) -> CompletionResponse:
    """Completion endpoint for Multi-Modal LLM."""

stream_complete abstractmethod #

stream_complete(prompt: str, image_documents: List[ImageNode], **kwargs: Any) -> CompletionResponseGen

Streaming completion endpoint for Multi-Modal LLM.

Source code in llama-index-core/llama_index/core/multi_modal_llms/base.py
104
105
106
107
108
@abstractmethod
def stream_complete(
    self, prompt: str, image_documents: List[ImageNode], **kwargs: Any
) -> CompletionResponseGen:
    """Streaming completion endpoint for Multi-Modal LLM."""

chat abstractmethod #

chat(messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse

Chat endpoint for Multi-Modal LLM.

Source code in llama-index-core/llama_index/core/multi_modal_llms/base.py
110
111
112
113
114
115
116
@abstractmethod
def chat(
    self,
    messages: Sequence[ChatMessage],
    **kwargs: Any,
) -> ChatResponse:
    """Chat endpoint for Multi-Modal LLM."""

stream_chat abstractmethod #

stream_chat(messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponseGen

Stream chat endpoint for Multi-Modal LLM.

Source code in llama-index-core/llama_index/core/multi_modal_llms/base.py
118
119
120
121
122
123
124
@abstractmethod
def stream_chat(
    self,
    messages: Sequence[ChatMessage],
    **kwargs: Any,
) -> ChatResponseGen:
    """Stream chat endpoint for Multi-Modal LLM."""

acomplete abstractmethod async #

acomplete(prompt: str, image_documents: List[ImageNode], **kwargs: Any) -> CompletionResponse

Async completion endpoint for Multi-Modal LLM.

Source code in llama-index-core/llama_index/core/multi_modal_llms/base.py
128
129
130
131
132
@abstractmethod
async def acomplete(
    self, prompt: str, image_documents: List[ImageNode], **kwargs: Any
) -> CompletionResponse:
    """Async completion endpoint for Multi-Modal LLM."""

astream_complete abstractmethod async #

astream_complete(prompt: str, image_documents: List[ImageNode], **kwargs: Any) -> CompletionResponseAsyncGen

Async streaming completion endpoint for Multi-Modal LLM.

Source code in llama-index-core/llama_index/core/multi_modal_llms/base.py
134
135
136
137
138
@abstractmethod
async def astream_complete(
    self, prompt: str, image_documents: List[ImageNode], **kwargs: Any
) -> CompletionResponseAsyncGen:
    """Async streaming completion endpoint for Multi-Modal LLM."""

achat abstractmethod async #

achat(messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse

Async chat endpoint for Multi-Modal LLM.

Source code in llama-index-core/llama_index/core/multi_modal_llms/base.py
140
141
142
143
144
145
146
@abstractmethod
async def achat(
    self,
    messages: Sequence[ChatMessage],
    **kwargs: Any,
) -> ChatResponse:
    """Async chat endpoint for Multi-Modal LLM."""

astream_chat abstractmethod async #

astream_chat(messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponseAsyncGen

Async streaming chat endpoint for Multi-Modal LLM.

Source code in llama-index-core/llama_index/core/multi_modal_llms/base.py
148
149
150
151
152
153
154
@abstractmethod
async def astream_chat(
    self,
    messages: Sequence[ChatMessage],
    **kwargs: Any,
) -> ChatResponseAsyncGen:
    """Async streaming chat endpoint for Multi-Modal LLM."""

BaseMultiModalComponent #

Bases: QueryComponent

Base LLM component.

Parameters:

Name Type Description Default
multi_modal_llm MultiModalLLM

LLM

required
streaming bool

Streaming mode

False
Source code in llama-index-core/llama_index/core/multi_modal_llms/base.py
187
188
189
190
191
192
193
194
195
class BaseMultiModalComponent(QueryComponent):
    """Base LLM component."""

    model_config = ConfigDict(arbitrary_types_allowed=True)
    multi_modal_llm: MultiModalLLM = Field(..., description="LLM")
    streaming: bool = Field(default=False, description="Streaming mode")

    def set_callback_manager(self, callback_manager: Any) -> None:
        """Set callback manager."""

set_callback_manager #

set_callback_manager(callback_manager: Any) -> None

Set callback manager.

Source code in llama-index-core/llama_index/core/multi_modal_llms/base.py
194
195
def set_callback_manager(self, callback_manager: Any) -> None:
    """Set callback manager."""

MultiModalCompleteComponent #

Bases: BaseMultiModalComponent

Multi-modal completion component.

Source code in llama-index-core/llama_index/core/multi_modal_llms/base.py
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
class MultiModalCompleteComponent(BaseMultiModalComponent):
    """Multi-modal completion component."""

    def _validate_component_inputs(self, input: Dict[str, Any]) -> Dict[str, Any]:
        """Validate component inputs during run_component."""
        if "prompt" not in input:
            raise ValueError("Prompt must be in input dict.")

        # do special check to see if prompt is a list of chat messages
        if isinstance(input["prompt"], get_args(List[ChatMessage])):
            raise NotImplementedError(
                "Chat messages not yet supported as input to multi-modal model."
            )
        else:
            input["prompt"] = validate_and_convert_stringable(input["prompt"])

        # make sure image documents are valid
        if "image_documents" in input:
            if not isinstance(input["image_documents"], list):
                raise ValueError("image_documents must be a list.")
            for doc in input["image_documents"]:
                if not isinstance(doc, (ImageDocument, ImageNode)):
                    raise ValueError(
                        "image_documents must be a list of ImageNode objects."
                    )

        return input

    def _run_component(self, **kwargs: Any) -> Any:
        """Run component."""
        # TODO: support only complete for now
        prompt = kwargs["prompt"]
        image_documents = kwargs.get("image_documents", [])

        response: Any
        if self.streaming:
            response = self.multi_modal_llm.stream_complete(prompt, image_documents)
        else:
            response = self.multi_modal_llm.complete(prompt, image_documents)
        return {"output": response}

    async def _arun_component(self, **kwargs: Any) -> Any:
        """Run component."""
        # TODO: support only complete for now
        # non-trivial to figure how to support chat/complete/etc.
        prompt = kwargs["prompt"]
        image_documents = kwargs.get("image_documents", [])

        response: Any
        if self.streaming:
            response = await self.multi_modal_llm.astream_complete(
                prompt, image_documents
            )
        else:
            response = await self.multi_modal_llm.acomplete(prompt, image_documents)
        return {"output": response}

    @property
    def input_keys(self) -> InputKeys:
        """Input keys."""
        # TODO: support only complete for now
        return InputKeys.from_keys({"prompt", "image_documents"})

    @property
    def output_keys(self) -> OutputKeys:
        """Output keys."""
        return OutputKeys.from_keys({"output"})

input_keys property #

input_keys: InputKeys

Input keys.

output_keys property #

output_keys: OutputKeys

Output keys.