Skip to content

Vllm

Vllm #

Bases: LLM

Vllm LLM.

This class runs a vLLM model locally.

Examples:

pip install llama-index-llms-vllm

from llama_index.llms.vllm import Vllm

# specific functions to format for mistral instruct
def messages_to_prompt(messages):
    prompt = "\n".join([str(x) for x in messages])
    return f"<s>[INST] {prompt} [/INST] </s>\n"

def completion_to_prompt(completion):
    return f"<s>[INST] {completion} [/INST] </s>\n"

llm = Vllm(
    model="mistralai/Mistral-7B-Instruct-v0.1",
    tensor_parallel_size=4,
    max_new_tokens=256,
    vllm_kwargs={"swap_space": 1, "gpu_memory_utilization": 0.5},
    messages_to_prompt=messages_to_prompt,
    completion_to_prompt=completion_to_prompt,
)

llm.complete(
    "What is a black hole?"
)
Source code in llama-index-integrations/llms/llama-index-llms-vllm/llama_index/llms/vllm/base.py
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
class Vllm(LLM):
    r"""Vllm LLM.

    This class runs a vLLM model locally.

    Examples:
        `pip install llama-index-llms-vllm`


        ```python
        from llama_index.llms.vllm import Vllm

        # specific functions to format for mistral instruct
        def messages_to_prompt(messages):
            prompt = "\n".join([str(x) for x in messages])
            return f"<s>[INST] {prompt} [/INST] </s>\n"

        def completion_to_prompt(completion):
            return f"<s>[INST] {completion} [/INST] </s>\n"

        llm = Vllm(
            model="mistralai/Mistral-7B-Instruct-v0.1",
            tensor_parallel_size=4,
            max_new_tokens=256,
            vllm_kwargs={"swap_space": 1, "gpu_memory_utilization": 0.5},
            messages_to_prompt=messages_to_prompt,
            completion_to_prompt=completion_to_prompt,
        )

        llm.complete(
            "What is a black hole?"
        )
        ```
    """

    model: Optional[str] = Field(description="The HuggingFace Model to use.")

    temperature: float = Field(description="The temperature to use for sampling.")

    tensor_parallel_size: Optional[int] = Field(
        default=1,
        description="The number of GPUs to use for distributed execution with tensor parallelism.",
    )

    trust_remote_code: Optional[bool] = Field(
        default=True,
        description="Trust remote code (e.g., from HuggingFace) when downloading the model and tokenizer.",
    )

    n: int = Field(
        default=1,
        description="Number of output sequences to return for the given prompt.",
    )

    best_of: Optional[int] = Field(
        default=None,
        description="Number of output sequences that are generated from the prompt.",
    )

    presence_penalty: float = Field(
        default=0.0,
        description="Float that penalizes new tokens based on whether they appear in the generated text so far.",
    )

    frequency_penalty: float = Field(
        default=0.0,
        description="Float that penalizes new tokens based on their frequency in the generated text so far.",
    )

    top_p: float = Field(
        default=1.0,
        description="Float that controls the cumulative probability of the top tokens to consider.",
    )

    top_k: int = Field(
        default=-1,
        description="Integer that controls the number of top tokens to consider.",
    )

    stop: Optional[List[str]] = Field(
        default=None,
        description="List of strings that stop the generation when they are generated.",
    )

    ignore_eos: bool = Field(
        default=False,
        description="Whether to ignore the EOS token and continue generating tokens after the EOS token is generated.",
    )

    max_new_tokens: int = Field(
        default=512,
        description="Maximum number of tokens to generate per output sequence.",
    )

    logprobs: Optional[int] = Field(
        default=None,
        description="Number of log probabilities to return per output token.",
    )

    dtype: str = Field(
        default="auto",
        description="The data type for the model weights and activations.",
    )

    download_dir: Optional[str] = Field(
        default=None,
        description="Directory to download and load the weights. (Default to the default cache dir of huggingface)",
    )

    vllm_kwargs: Dict[str, Any] = Field(
        default_factory=dict,
        description="Holds any model parameters valid for `vllm.LLM` call not explicitly specified.",
    )

    api_url: str = Field(description="The api url for vllm server")

    _client: Any = PrivateAttr()

    def __init__(
        self,
        model: str = "facebook/opt-125m",
        temperature: float = 1.0,
        tensor_parallel_size: int = 1,
        trust_remote_code: bool = True,
        n: int = 1,
        best_of: Optional[int] = None,
        presence_penalty: float = 0.0,
        frequency_penalty: float = 0.0,
        top_p: float = 1.0,
        top_k: int = -1,
        stop: Optional[List[str]] = None,
        ignore_eos: bool = False,
        max_new_tokens: int = 512,
        logprobs: Optional[int] = None,
        dtype: str = "auto",
        download_dir: Optional[str] = None,
        vllm_kwargs: Dict[str, Any] = {},
        api_url: Optional[str] = "",
        callback_manager: Optional[CallbackManager] = None,
        system_prompt: Optional[str] = None,
        messages_to_prompt: Optional[Callable[[Sequence[ChatMessage]], str]] = None,
        completion_to_prompt: Optional[Callable[[str], str]] = None,
        pydantic_program_mode: PydanticProgramMode = PydanticProgramMode.DEFAULT,
        output_parser: Optional[BaseOutputParser] = None,
    ) -> None:
        callback_manager = callback_manager or CallbackManager([])
        super().__init__(
            model=model,
            temperature=temperature,
            n=n,
            best_of=best_of,
            presence_penalty=presence_penalty,
            frequency_penalty=frequency_penalty,
            top_p=top_p,
            top_k=top_k,
            stop=stop,
            ignore_eos=ignore_eos,
            max_new_tokens=max_new_tokens,
            logprobs=logprobs,
            dtype=dtype,
            download_dir=download_dir,
            vllm_kwargs=vllm_kwargs,
            api_url=api_url,
            callback_manager=callback_manager,
            system_prompt=system_prompt,
            messages_to_prompt=messages_to_prompt,
            completion_to_prompt=completion_to_prompt,
            pydantic_program_mode=pydantic_program_mode,
            output_parser=output_parser,
        )
        if not api_url:
            try:
                from vllm import LLM as VLLModel
            except ImportError:
                raise ImportError(
                    "Could not import vllm python package. "
                    "Please install it with `pip install vllm`."
                )
            self._client = VLLModel(
                model=model,
                tensor_parallel_size=tensor_parallel_size,
                trust_remote_code=trust_remote_code,
                dtype=dtype,
                download_dir=download_dir,
                **vllm_kwargs
            )
        else:
            self._client = None

    @classmethod
    def class_name(cls) -> str:
        return "Vllm"

    @property
    def metadata(self) -> LLMMetadata:
        return LLMMetadata(model_name=self.model)

    @property
    def _model_kwargs(self) -> Dict[str, Any]:
        base_kwargs = {
            "temperature": self.temperature,
            "max_tokens": self.max_new_tokens,
            "n": self.n,
            "frequency_penalty": self.frequency_penalty,
            "presence_penalty": self.presence_penalty,
            "best_of": self.best_of,
            "ignore_eos": self.ignore_eos,
            "stop": self.stop,
            "logprobs": self.logprobs,
            "top_k": self.top_k,
            "top_p": self.top_p,
        }
        return {**base_kwargs}

    @atexit.register
    def close():
        import torch
        import gc

        if torch.cuda.is_available():
            gc.collect()
            torch.cuda.empty_cache()
            torch.cuda.synchronize()

    def _get_all_kwargs(self, **kwargs: Any) -> Dict[str, Any]:
        return {
            **self._model_kwargs,
            **kwargs,
        }

    @llm_chat_callback()
    def chat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse:
        kwargs = kwargs if kwargs else {}
        prompt = self.messages_to_prompt(messages)
        completion_response = self.complete(prompt, **kwargs)
        return completion_response_to_chat_response(completion_response)

    @llm_completion_callback()
    def complete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponse:
        kwargs = kwargs if kwargs else {}
        params = {**self._model_kwargs, **kwargs}

        from vllm import SamplingParams

        # build sampling parameters
        sampling_params = SamplingParams(**params)
        outputs = self._client.generate([prompt], sampling_params)
        return CompletionResponse(text=outputs[0].outputs[0].text)

    @llm_chat_callback()
    def stream_chat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponseGen:
        raise (ValueError("Not Implemented"))

    @llm_completion_callback()
    def stream_complete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponseGen:
        raise (ValueError("Not Implemented"))

    @llm_chat_callback()
    async def achat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponse:
        kwargs = kwargs if kwargs else {}
        return self.chat(messages, **kwargs)

    @llm_completion_callback()
    async def acomplete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponse:
        kwargs = kwargs if kwargs else {}
        return self.complete(prompt, **kwargs)

    @llm_chat_callback()
    async def astream_chat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponseAsyncGen:
        raise (ValueError("Not Implemented"))

    @llm_completion_callback()
    async def astream_complete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponseAsyncGen:
        raise (ValueError("Not Implemented"))

VllmServer #

Bases: Vllm

Vllm LLM.

This class connects to a vLLM server (non-openai versions).

If using the OpenAI-API vLLM server, please see the OpenAILike LLM class.

Examples:

pip install llama-index-llms-vllm

from llama_index.llms.vllm import VllmServer

# specific functions to format for mistral instruct
def messages_to_prompt(messages):
    prompt = "\n".join([str(x) for x in messages])
    return f"<s>[INST] {prompt} [/INST] </s>\n"

def completion_to_prompt(completion):
    return f"<s>[INST] {completion} [/INST] </s>\n"

llm = VllmServer(
    api_url=api_url,
    max_new_tokens=256,
    temperature=0.1,
    messages_to_prompt=messages_to_prompt,
    completion_to_prompt=completion_to_prompt,
)

llm.complete(
    "What is a black hole?"
)
Source code in llama-index-integrations/llms/llama-index-llms-vllm/llama_index/llms/vllm/base.py
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
class VllmServer(Vllm):
    r"""Vllm LLM.

    This class connects to a vLLM server (non-openai versions).

    If using the OpenAI-API vLLM server, please see the `OpenAILike` LLM class.

    Examples:
        `pip install llama-index-llms-vllm`


        ```python
        from llama_index.llms.vllm import VllmServer

        # specific functions to format for mistral instruct
        def messages_to_prompt(messages):
            prompt = "\n".join([str(x) for x in messages])
            return f"<s>[INST] {prompt} [/INST] </s>\n"

        def completion_to_prompt(completion):
            return f"<s>[INST] {completion} [/INST] </s>\n"

        llm = VllmServer(
            api_url=api_url,
            max_new_tokens=256,
            temperature=0.1,
            messages_to_prompt=messages_to_prompt,
            completion_to_prompt=completion_to_prompt,
        )

        llm.complete(
            "What is a black hole?"
        )
        ```
    """

    def __init__(
        self,
        model: str = "facebook/opt-125m",
        api_url: str = "http://localhost:8000",
        temperature: float = 1.0,
        tensor_parallel_size: Optional[int] = 1,
        trust_remote_code: Optional[bool] = True,
        n: int = 1,
        best_of: Optional[int] = None,
        presence_penalty: float = 0.0,
        frequency_penalty: float = 0.0,
        top_p: float = 1.0,
        top_k: int = -1,
        stop: Optional[List[str]] = None,
        ignore_eos: bool = False,
        max_new_tokens: int = 512,
        logprobs: Optional[int] = None,
        dtype: str = "auto",
        download_dir: Optional[str] = None,
        messages_to_prompt: Optional[Callable] = None,
        completion_to_prompt: Optional[Callable] = None,
        vllm_kwargs: Dict[str, Any] = {},
        callback_manager: Optional[CallbackManager] = None,
        output_parser: Optional[BaseOutputParser] = None,
    ) -> None:
        messages_to_prompt = messages_to_prompt or generic_messages_to_prompt
        completion_to_prompt = completion_to_prompt or (lambda x: x)
        callback_manager = callback_manager or CallbackManager([])

        super().__init__(
            model=model,
            temperature=temperature,
            n=n,
            best_of=best_of,
            presence_penalty=presence_penalty,
            frequency_penalty=frequency_penalty,
            top_p=top_p,
            top_k=top_k,
            stop=stop,
            ignore_eos=ignore_eos,
            max_new_tokens=max_new_tokens,
            logprobs=logprobs,
            dtype=dtype,
            download_dir=download_dir,
            messages_to_prompt=messages_to_prompt,
            completion_to_prompt=completion_to_prompt,
            vllm_kwargs=vllm_kwargs,
            api_url=api_url,
            callback_manager=callback_manager,
            output_parser=output_parser,
        )
        self._client = None

    @classmethod
    def class_name(cls) -> str:
        return "VllmServer"

    def __del__(self) -> None:
        ...

    @llm_completion_callback()
    def complete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponse:
        kwargs = kwargs if kwargs else {}
        params = {**self._model_kwargs, **kwargs}

        # build sampling parameters
        sampling_params = dict(**params)
        sampling_params["prompt"] = prompt
        response = post_http_request(self.api_url, sampling_params, stream=False)
        output = get_response(response)

        return CompletionResponse(text=output[0])

    @llm_completion_callback()
    def stream_complete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponseGen:
        kwargs = kwargs if kwargs else {}
        params = {**self._model_kwargs, **kwargs}

        sampling_params = dict(**params)
        sampling_params["prompt"] = prompt
        response = post_http_request(self.api_url, sampling_params, stream=True)

        def gen() -> CompletionResponseGen:
            response_str = ""
            prev_prefix_len = len(prompt)
            for chunk in response.iter_lines(
                chunk_size=8192, decode_unicode=False, delimiter=b"\0"
            ):
                if chunk:
                    data = json.loads(chunk.decode("utf-8"))

                    increasing_concat = data["text"][0]
                    pref = prev_prefix_len
                    prev_prefix_len = len(increasing_concat)
                    yield CompletionResponse(
                        text=increasing_concat, delta=increasing_concat[pref:]
                    )

        return gen()

    @llm_completion_callback()
    async def acomplete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponse:
        kwargs = kwargs if kwargs else {}
        return self.complete(prompt, **kwargs)

    @llm_completion_callback()
    async def astream_complete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponseAsyncGen:
        kwargs = kwargs if kwargs else {}
        params = {**self._model_kwargs, **kwargs}

        # build sampling parameters
        sampling_params = dict(**params)
        sampling_params["prompt"] = prompt

        async def gen() -> CompletionResponseAsyncGen:
            for message in self.stream_complete(prompt, **kwargs):
                yield message

        return gen()

    @llm_chat_callback()
    def stream_chat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponseGen:
        prompt = self.messages_to_prompt(messages)
        completion_response = self.stream_complete(prompt, **kwargs)
        return stream_completion_response_to_chat_response(completion_response)

    @llm_chat_callback()
    async def astream_chat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponseAsyncGen:
        async def gen() -> ChatResponseAsyncGen:
            for message in self.stream_chat(messages, **kwargs):
                yield message

        return gen()