25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334 | class RunGptLLM(LLM):
"""RunGPT LLM.
The opengpt of Jina AI models.
Examples:
`pip install llama-index-llms-rungpt`
```python
from llama_index.llms.rungpt import RunGptLLM
llm = RunGptLLM(model="rungpt", endpoint="0.0.0.0:51002")
response = llm.complete("What public transportation might be available in a city?")
print(str(response))
```
"""
model: Optional[str] = Field(
default=DEFAULT_RUNGPT_MODEL, description="The rungpt model to use."
)
endpoint: str = Field(description="The endpoint of serving address.")
temperature: float = Field(
default=DEFAULT_RUNGPT_TEMP,
description="The temperature to use for sampling.",
ge=0.0,
le=1.0,
)
max_tokens: int = Field(
default=DEFAULT_NUM_OUTPUTS,
description="Max tokens model generates.",
gt=0,
)
context_window: int = Field(
default=DEFAULT_CONTEXT_WINDOW,
description="The maximum number of context tokens for the model.",
gt=0,
)
additional_kwargs: Dict[str, Any] = Field(
default_factory=dict, description="Additional kwargs for the Replicate API."
)
base_url: str = Field(
description="The address of your target model served by rungpt."
)
def __init__(
self,
model: Optional[str] = DEFAULT_RUNGPT_MODEL,
endpoint: str = "0.0.0.0:51002",
temperature: float = DEFAULT_RUNGPT_TEMP,
max_tokens: Optional[int] = DEFAULT_NUM_OUTPUTS,
context_window: int = DEFAULT_CONTEXT_WINDOW,
additional_kwargs: Optional[Dict[str, Any]] = None,
callback_manager: Optional[CallbackManager] = None,
system_prompt: Optional[str] = None,
messages_to_prompt: Optional[Callable[[Sequence[ChatMessage]], str]] = None,
completion_to_prompt: Optional[Callable[[str], str]] = None,
pydantic_program_mode: PydanticProgramMode = PydanticProgramMode.DEFAULT,
output_parser: Optional[BaseOutputParser] = None,
):
if endpoint.startswith("http://"):
base_url = endpoint
else:
base_url = "http://" + endpoint
super().__init__(
model=model,
endpoint=endpoint,
temperature=temperature,
max_tokens=max_tokens,
context_window=context_window,
additional_kwargs=additional_kwargs or {},
callback_manager=callback_manager or CallbackManager([]),
base_url=base_url,
system_prompt=system_prompt,
messages_to_prompt=messages_to_prompt,
completion_to_prompt=completion_to_prompt,
pydantic_program_mode=pydantic_program_mode,
output_parser=output_parser,
)
@classmethod
def class_name(cls) -> str:
return "RunGptLLM"
@property
def metadata(self) -> LLMMetadata:
"""LLM metadata."""
return LLMMetadata(
context_window=self.context_window,
num_output=self.max_tokens,
model_name=self._model,
)
@llm_completion_callback()
def complete(
self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponse:
try:
import requests
except ImportError:
raise ImportError(
"Could not import requests library."
"Please install requests with `pip install requests`"
)
response_gpt = requests.post(
self.base_url + "/generate",
json=self._request_pack("complete", prompt, **kwargs),
stream=False,
).json()
return CompletionResponse(
text=response_gpt["choices"][0]["text"],
additional_kwargs=response_gpt["usage"],
raw=response_gpt,
)
@llm_completion_callback()
def stream_complete(
self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponseGen:
try:
import requests
except ImportError:
raise ImportError(
"Could not import requests library."
"Please install requests with `pip install requests`"
)
response_gpt = requests.post(
self.base_url + "/generate_stream",
json=self._request_pack("complete", prompt, **kwargs),
stream=True,
)
try:
import sseclient
except ImportError:
raise ImportError(
"Could not import sseclient-py library."
"Please install requests with `pip install sseclient-py`"
)
client = sseclient.SSEClient(response_gpt)
response_iter = client.events()
def gen() -> CompletionResponseGen:
text = ""
for item in response_iter:
item_dict = dict(item.data)
delta = item_dict["choices"][0]["text"]
additional_kwargs = item_dict["usage"]
text = text + self._space_handler(delta)
yield CompletionResponse(
text=text,
delta=delta,
raw=item_dict,
additional_kwargs=additional_kwargs,
)
return gen()
@llm_chat_callback()
def chat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse:
message_list = self._message_wrapper(messages)
try:
import requests
except ImportError:
raise ImportError(
"Could not import requests library."
"Please install requests with `pip install requests`"
)
response_gpt = requests.post(
self.base_url + "/chat",
json=self._request_pack("chat", message_list, **kwargs),
stream=False,
).json()
chat_message, _ = self._message_unpacker(response_gpt)
return ChatResponse(message=chat_message, raw=response_gpt)
@llm_chat_callback()
def stream_chat(
self, messages: Sequence[ChatMessage], **kwargs: Any
) -> ChatResponseGen:
message_list = self._message_wrapper(messages)
try:
import requests
except ImportError:
raise ImportError(
"Could not import requests library."
"Please install requests with `pip install requests`"
)
response_gpt = requests.post(
self.base_url + "/chat_stream",
json=self._request_pack("chat", message_list, **kwargs),
stream=True,
)
try:
import sseclient
except ImportError:
raise ImportError(
"Could not import sseclient-py library."
"Please install requests with `pip install sseclient-py`"
)
client = sseclient.SSEClient(response_gpt)
chat_iter = client.events()
def gen() -> ChatResponseGen:
content = ""
for item in chat_iter:
item_dict = dict(item.data)
chat_message, delta = self._message_unpacker(item_dict)
content = content + self._space_handler(delta)
chat_message.content = content
yield ChatResponse(message=chat_message, raw=item_dict, delta=delta)
return gen()
@llm_chat_callback()
async def achat(
self,
messages: Sequence[ChatMessage],
**kwargs: Any,
) -> ChatResponse:
return self.chat(messages, **kwargs)
@llm_chat_callback()
async def astream_chat(
self,
messages: Sequence[ChatMessage],
**kwargs: Any,
) -> ChatResponseAsyncGen:
async def gen() -> ChatResponseAsyncGen:
for message in self.stream_chat(messages, **kwargs):
yield message
# NOTE: convert generator to async generator
return gen()
@llm_completion_callback()
async def acomplete(
self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponse:
return self.complete(prompt, **kwargs)
@llm_completion_callback()
async def astream_complete(
self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponseAsyncGen:
async def gen() -> CompletionResponseAsyncGen:
for message in self.stream_complete(prompt, **kwargs):
yield message
return gen()
def _message_wrapper(self, messages: Sequence[ChatMessage]) -> List[Dict[str, Any]]:
message_list = []
for message in messages:
role = message.role.value
content = message.content
message_list.append({"role": role, "content": content})
return message_list
def _message_unpacker(
self, response_gpt: Dict[str, Any]
) -> Tuple[ChatMessage, str]:
message = response_gpt["choices"][0]["message"]
additional_kwargs = response_gpt["usage"]
role = message["role"]
content = message["content"]
key = MessageRole.SYSTEM
for r in MessageRole:
if r.value == role:
key = r
chat_message = ChatMessage(
role=key, content=content, additional_kwargs=additional_kwargs
)
return chat_message, content
def _request_pack(
self, mode: str, prompt: Union[str, List[Dict[str, Any]]], **kwargs: Any
) -> Optional[Dict[str, Any]]:
if mode == "complete":
return {
"prompt": prompt,
"max_tokens": kwargs.pop("max_tokens", self.max_tokens),
"temperature": kwargs.pop("temperature", self.temperature),
"top_k": kwargs.pop("top_k", 50),
"top_p": kwargs.pop("top_p", 0.95),
"repetition_penalty": kwargs.pop("repetition_penalty", 1.2),
"do_sample": kwargs.pop("do_sample", False),
"echo": kwargs.pop("echo", True),
"n": kwargs.pop("n", 1),
"stop": kwargs.pop("stop", "."),
}
elif mode == "chat":
return {
"messages": prompt,
"max_tokens": kwargs.pop("max_tokens", self.max_tokens),
"temperature": kwargs.pop("temperature", self.temperature),
"top_k": kwargs.pop("top_k", 50),
"top_p": kwargs.pop("top_p", 0.95),
"repetition_penalty": kwargs.pop("repetition_penalty", 1.2),
"do_sample": kwargs.pop("do_sample", False),
"echo": kwargs.pop("echo", True),
"n": kwargs.pop("n", 1),
"stop": kwargs.pop("stop", "."),
}
return None
def _space_handler(self, word: str) -> str:
if word.isalnum():
return " " + word
return word
|