Skip to content

Openai like

OpenAILike #

Bases: OpenAI

OpenaAILike LLM.

OpenAILike is a thin wrapper around the OpenAI model that makes it compatible with 3rd party tools that provide an openai-compatible api.

Currently, llama_index prevents using custom models with their OpenAI class because they need to be able to infer some metadata from the model name.

NOTE: You still need to set the OPENAI_BASE_API and OPENAI_API_KEY environment variables or the api_key and api_base constructor arguments. OPENAI_API_KEY/api_key can normally be set to anything in this case, but will depend on the tool you're using.

Examples:

pip install llama-index-llms-openai-like

from llama_index.llms.openai_like import OpenAILike

llm = OpenAILike(model="my model", api_base="https://hostname.com/v1", api_key="fake")

response = llm.complete("Hello World!")
print(str(response))
Source code in llama-index-integrations/llms/llama-index-llms-openai-like/llama_index/llms/openai_like/base.py
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
class OpenAILike(OpenAI):
    """OpenaAILike LLM.

    OpenAILike is a thin wrapper around the OpenAI model that makes it compatible with
    3rd party tools that provide an openai-compatible api.

    Currently, llama_index prevents using custom models with their OpenAI class
    because they need to be able to infer some metadata from the model name.

    NOTE: You still need to set the OPENAI_BASE_API and OPENAI_API_KEY environment
    variables or the api_key and api_base constructor arguments.
    OPENAI_API_KEY/api_key can normally be set to anything in this case,
    but will depend on the tool you're using.

    Examples:
        `pip install llama-index-llms-openai-like`

        ```python
        from llama_index.llms.openai_like import OpenAILike

        llm = OpenAILike(model="my model", api_base="https://hostname.com/v1", api_key="fake")

        response = llm.complete("Hello World!")
        print(str(response))
        ```
    """

    context_window: int = Field(
        default=DEFAULT_CONTEXT_WINDOW,
        description=LLMMetadata.model_fields["context_window"].description,
    )
    is_chat_model: bool = Field(
        default=False,
        description=LLMMetadata.model_fields["is_chat_model"].description,
    )
    is_function_calling_model: bool = Field(
        default=False,
        description=LLMMetadata.model_fields["is_function_calling_model"].description,
    )
    tokenizer: Union[Tokenizer, str, None] = Field(
        default=None,
        description=(
            "An instance of a tokenizer object that has an encode method, or the name"
            " of a tokenizer model from Hugging Face. If left as None, then this"
            " disables inference of max_tokens."
        ),
    )

    @property
    def metadata(self) -> LLMMetadata:
        return LLMMetadata(
            context_window=self.context_window,
            num_output=self.max_tokens or -1,
            is_chat_model=self.is_chat_model,
            is_function_calling_model=self.is_function_calling_model,
            model_name=self.model,
        )

    @property
    def _tokenizer(self) -> Optional[Tokenizer]:
        if isinstance(self.tokenizer, str):
            return AutoTokenizer.from_pretrained(self.tokenizer)
        return self.tokenizer

    @classmethod
    def class_name(cls) -> str:
        return "OpenAILike"

    def complete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponse:
        """Complete the prompt."""
        if not formatted:
            prompt = self.completion_to_prompt(prompt)

        return super().complete(prompt, **kwargs)

    def stream_complete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponseGen:
        """Stream complete the prompt."""
        if not formatted:
            prompt = self.completion_to_prompt(prompt)

        return super().stream_complete(prompt, **kwargs)

    def chat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse:
        """Chat with the model."""
        if not self.metadata.is_chat_model:
            prompt = self.messages_to_prompt(messages)
            completion_response = self.complete(prompt, formatted=True, **kwargs)
            return completion_response_to_chat_response(completion_response)

        return super().chat(messages, **kwargs)

    def stream_chat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponseGen:
        if not self.metadata.is_chat_model:
            prompt = self.messages_to_prompt(messages)
            completion_response = self.stream_complete(prompt, formatted=True, **kwargs)
            return stream_completion_response_to_chat_response(completion_response)

        return super().stream_chat(messages, **kwargs)

    # -- Async methods --

    async def acomplete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponse:
        """Complete the prompt."""
        if not formatted:
            prompt = self.completion_to_prompt(prompt)

        return await super().acomplete(prompt, **kwargs)

    async def astream_complete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponseAsyncGen:
        """Stream complete the prompt."""
        if not formatted:
            prompt = self.completion_to_prompt(prompt)

        return await super().astream_complete(prompt, **kwargs)

    async def achat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponse:
        """Chat with the model."""
        if not self.metadata.is_chat_model:
            prompt = self.messages_to_prompt(messages)
            completion_response = await self.acomplete(prompt, formatted=True, **kwargs)
            return completion_response_to_chat_response(completion_response)

        return await super().achat(messages, **kwargs)

    async def astream_chat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponseAsyncGen:
        if not self.metadata.is_chat_model:
            prompt = self.messages_to_prompt(messages)
            completion_response = await self.astream_complete(
                prompt, formatted=True, **kwargs
            )
            return async_stream_completion_response_to_chat_response(
                completion_response
            )

        return await super().astream_chat(messages, **kwargs)

complete #

complete(prompt: str, formatted: bool = False, **kwargs: Any) -> CompletionResponse

Complete the prompt.

Source code in llama-index-integrations/llms/llama-index-llms-openai-like/llama_index/llms/openai_like/base.py
92
93
94
95
96
97
98
99
def complete(
    self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponse:
    """Complete the prompt."""
    if not formatted:
        prompt = self.completion_to_prompt(prompt)

    return super().complete(prompt, **kwargs)

stream_complete #

stream_complete(prompt: str, formatted: bool = False, **kwargs: Any) -> CompletionResponseGen

Stream complete the prompt.

Source code in llama-index-integrations/llms/llama-index-llms-openai-like/llama_index/llms/openai_like/base.py
101
102
103
104
105
106
107
108
def stream_complete(
    self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponseGen:
    """Stream complete the prompt."""
    if not formatted:
        prompt = self.completion_to_prompt(prompt)

    return super().stream_complete(prompt, **kwargs)

chat #

chat(messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse

Chat with the model.

Source code in llama-index-integrations/llms/llama-index-llms-openai-like/llama_index/llms/openai_like/base.py
110
111
112
113
114
115
116
117
def chat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse:
    """Chat with the model."""
    if not self.metadata.is_chat_model:
        prompt = self.messages_to_prompt(messages)
        completion_response = self.complete(prompt, formatted=True, **kwargs)
        return completion_response_to_chat_response(completion_response)

    return super().chat(messages, **kwargs)

acomplete async #

acomplete(prompt: str, formatted: bool = False, **kwargs: Any) -> CompletionResponse

Complete the prompt.

Source code in llama-index-integrations/llms/llama-index-llms-openai-like/llama_index/llms/openai_like/base.py
131
132
133
134
135
136
137
138
async def acomplete(
    self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponse:
    """Complete the prompt."""
    if not formatted:
        prompt = self.completion_to_prompt(prompt)

    return await super().acomplete(prompt, **kwargs)

astream_complete async #

astream_complete(prompt: str, formatted: bool = False, **kwargs: Any) -> CompletionResponseAsyncGen

Stream complete the prompt.

Source code in llama-index-integrations/llms/llama-index-llms-openai-like/llama_index/llms/openai_like/base.py
140
141
142
143
144
145
146
147
async def astream_complete(
    self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponseAsyncGen:
    """Stream complete the prompt."""
    if not formatted:
        prompt = self.completion_to_prompt(prompt)

    return await super().astream_complete(prompt, **kwargs)

achat async #

achat(messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse

Chat with the model.

Source code in llama-index-integrations/llms/llama-index-llms-openai-like/llama_index/llms/openai_like/base.py
149
150
151
152
153
154
155
156
157
158
async def achat(
    self, messages: Sequence[ChatMessage], **kwargs: Any
) -> ChatResponse:
    """Chat with the model."""
    if not self.metadata.is_chat_model:
        prompt = self.messages_to_prompt(messages)
        completion_response = await self.acomplete(prompt, formatted=True, **kwargs)
        return completion_response_to_chat_response(completion_response)

    return await super().achat(messages, **kwargs)